







# Nutritional Grouping Strategies for Dairy Lactating Cows

V.E. Cabrera

University of Wisconsin-Madison Dairy Science

### Rationale

### Opportunity to fine-tune nutrient use

# Same ration (TMR) to all cows (groups)

All lactating cows receive same density diet



#### Preferred "high" rations

Low producing animals receive more nutrients than required

### One diet for all

Would never optimize production and efficiency

## Improve feed efficiency

+ feeding groups (precision feeding)

# Improved nutrient use efficiency

Diet closer to cow requirements



#### Less overfed animals

Decreased overweighted cows

#### Less nutrient excretion

Decreased environmental concerns

Wang et al., 2000



#### Lower feeding costs

Higher milk income over feed cost



# Why farmers do not group more?

### Trying to find most important constraints

#### 2-page mailed survey



#### **Results (responses)**

~200 WI ~59 MI

# 25% feeding same ration to all lactating

|   | Reported constraint      |  |
|---|--------------------------|--|
| 1 | Perception of milk drops |  |
| 2 | Keep mgt. simple         |  |
| 3 | Conflicts w/repro group  |  |
| 4 | Facilities do not allow  |  |
|   |                          |  |
| 5 | Don't believe are needed |  |
| 6 | Nutritionist don't want  |  |
| 7 | Labor or personnel       |  |

# Strategies for grouping cows

Depend on farm and herd characteristics

### Individual cow nutrient requirements

- Energy
- Protein

# Number of lactating cows on the herd



#### Farm characteristics

Capacity to handle lactating feeding groups



Adapted from McGilliard et al., 1983; St-Pierre and Thraen, 1999

### **Cow-level estimates**

### Internally performed

#### **Nutrient requirement**

- •NEL (NRC, 2001)
- •CP (McGilliard et al., 1983)

#### Feed requirement

• **DMI** (NRC, 2011)

### Live body weight

- Farm records (if available)
- Calculated (Korver et al., 1985)

#### Nutrient per unit DM

- NEL/DMI
- CP/DMI



# Nutrient requirement for a group

Energy and protein

#### **Lead factor**

Multiplicative factor to adjust nutrient requirements of a group

Stallings and McGilliard, 1984 St-Pierre and Thraen, 1999



 $NE_{group}$  (Mcal) =  $83^{rd}$  Percentile of ( $NE_{group\_cows}$ )

 $CP_{group}$  (%) = 83<sup>rd</sup> Percentile ( $CP_{group\_cows}$ )

# Criteria for nutritional grouping

Several criteria exist

### Days after calving (DIM)

Based on stage of lactation



#### Fat corrected milk

Based on level of production measured as FCM

#### **Dairy merit**

Function of both FCM and BW

#### Cluster

Seems to be MOST efficient criterion



McGilliard et al., 1983 St-Pierre and Thraen, 1999

## Value of NE, CP, and milk

Determine diets' cost (August 2013)

#### Using referee feeds

Petersen method

St-Pierre and Giamocic, 2000



Corn: 9% CP + 2 Mcal/kg = \$0.267/kg

SBM: 54% CP + 2.2 Mcal/kg = \$0.587/kg

#### **Price NE and CP**

NE (\$/Mcal) = 0.116

CP (\$/kg) = 0.748

#### Price of milk

\$0.42/kg

http://future.aae.wisc.edu/

http://dairymgt.info/tools/feedval 12/index.php

# Optimize cows to a feeding group

### Maximize the income over feed cost

#### Non-linear optimization

- Iterative process (all permutations)
- Search for global maxima IOFC



 $Max(IOFC) = SUM(IOFC_{group})$ 

IOFCgroup = Milk Value - Feed Cost

### Additional costs and benefits

### Impacts grouping feeding strategies

#### Management cost

- Additional labor
- Extra management

#### **Avoid costs**

 Additives and supplements savings

#### Milk depression

- Cow social interactions
- Diet changes



### Overall net return

### Bottom line grouping strategies

#### Net return

- + Max (IOFC)
- Extra management
- Milk depression
- + Savings





VS.



# Grouping strategies for feeding

Online user-friendly decision support tool



### Video demonstration

Available at DairyMGT.info

### Grouping Strategies for Feeding Lactating Dairy Cattle







### Get the farm data

Farm time specific dataset

#### **NE and CP value**

- Farm known value
- Calculated from corn and soybean meal

#### Milk price

Farm known value

#### **Cow information**

Table of specific data

| Cow ID | Parity | DIM | Milk,<br>lb/d | Milk fat, % |
|--------|--------|-----|---------------|-------------|
| 6234   | 1      | 84  | 62            | 4.1         |
| 132    | 7      | 118 | 73            | 3.8         |
| 6196   | 1      | 198 | 85            | 3.4         |
| 6149   | 4      | 199 | 114           | 3.6         |
| 5045   | 2      | 280 | 81            | 4.3         |

### **Grouping strategies**

- Farm current situation
- Possible situations

#### Additional information

- Cow's BW, or
- Parity's average BW

## Grouping strategies for feeding

Decision process



## **Tool application**

Wisconsin farm with 470 lactating cows

| Current situation |      |  |
|-------------------|------|--|
| Lactating cows    | 470  |  |
| Number groups     | None |  |
| NE, Mcal/lb       | 0.80 |  |
| CP, %             | 17%  |  |

| Possible situation |               |  |  |
|--------------------|---------------|--|--|
| Number groups      | 3             |  |  |
| Group sizes        | 100, 100, 270 |  |  |
| Added cost, \$     | \$1,000/month |  |  |
| Milk loss          | 5 lb/cow      |  |  |
| Milk loss time     | 4 days        |  |  |
| Saved cost, \$     | \$0           |  |  |

## Decision support system

Cluster grouping criteria

|         | Possible situation |                |          |                     |
|---------|--------------------|----------------|----------|---------------------|
|         | Cow<br>numbers     | NE,<br>Mcal/lb | CP,<br>% | IOFC,<br>\$/cow/day |
| Group 1 | 270                | 0.71           | 16.05    | 9.3                 |
| Group 2 | 100                | 0.65           | 14.18    | 7.2                 |
| Group 3 | 100                | 0.62           | 13.07    | 4.7                 |



## **Tool application**

### 30 Wisconsin dairy farms

# No grouping vs. 3 groups

Same size groups

#### Same prices for all

- \$15.89/cwt milk
- •\$0.14337/lb CP
- \$0.1174/Mcal NEI

### **Cluster grouping**

 83<sup>rd</sup> percentile CP and NEI



### Projected body weight

- 1,100 lb primiparous
- 1,300 lb multiparous

## Analysis from dairy farm records

### 30 Wisconsin dairy farms

|         | Number of lactating cows (n=30) | Income over<br>Feed Cost<br>(no grouping) | Feed Cost |
|---------|---------------------------------|-------------------------------------------|-----------|
|         |                                 | \$/cow per year                           |           |
| Mean    | 788                             | \$2,311                                   | \$2,707   |
| Minimum | < 200                           | \$697                                     | \$1,059   |
| Maximum | > 1,000                         | \$2,967                                   | \$3,285   |

# Increase of IOFC (\$/cow per year)

- Between 7 and 52%
- Mean = \$396
- Range = \$161 to \$580

# After reasonable extra costs

 Still increased net margin of between 5 and 47%

