

Determining the True Value of Dairy Feeds

V.E. Cabrera

University of Wisconsin-Madison Dairy Science

DairyMGT.info FeedVal2012

Dairy Management site is designed to support dairy farming decision-making focusing on model-based scientific research. The ultimate goal is to provide user-friendly computerized decision support systems to help dairy farms improve their economic performance. Dr. Victor Cabrera focuses on model-based decision support in dairy cattle and in dairy farm production systems. Dr. Cabrera's primary interest is to improve cost-efficiency and profitability along with environmental stewardship in dairy farms by using simulation techniques, artificial intelligence, and expert systems. Dr. Cabrera's research and Extension programs involve interdisciplinary and participatory approaches towards the creation of user-friendly decision support systems. As an Extension Specialist, Dr. Cabrera works in close relationships with county-based Extension faculty, dairy producers, consultants, and related industry.

Opportunities

- Ph.D. Student Opportunity New!
- Latest Projects
- Improving Dairy Farm Sustainability
- Genomic Selection and Herd Management
- → Dairy Reproduction Decision Support Tools
- → Strategies of Pasture Supplementation
- Improving Dairy Cow Fertility

O UW

- University of Wisconsin Madison
- UW Cooperative Extension
- UW Dairy Science
- Dairy Cattle Reproduction
- Dairy Cattle Nutrition
- → Milk Quality
- UW Dairy Nutrient
- Understanding Dairy Markets
- → UW Center for Dairy Profitability

Assistant Professor
Extension Specialist Dairy
Management
279 Animal Sciences
1675 Observatory Dr.
Madison, WI 53708
(608) 265-8508
vcabrera@wisc.edu
More...

Victor E. Cabrera, Ph.D.

Admin Portal

Click Above to reach the Administrator Portal.

Feeding

- FeedVal 2012
- Grouping Strategies for Feeding Lactating Dairy Cattle
- Optigen® Evaluator
- O Income Over Feed Supplement Cost
- O Dairy Extension Feed Cost Evaluator
- O Com Feeding Strategies
- O Income Over Feed Cost
- O Dairy Ration Feed Additive Break-Even Analysis

Heifers

- O Cost-Benefit of Accelerated Liquid Feeding Program for Dairy Calves
- @ Economic Value of Sexed Semen Programs for Dairy Heifers
- O Heifer Replacement
- O Heifer Break-Even

Reproduction

- O UW-DairyRepro\$Plus: A Reproductive Analysis Tool that Includes Heat Detection Devices
- Economic Value of Sexed Semen Programs for Dairy Heifers
- O UW-DairyRepro\$: A Reproductive Economic Analysis Tool
- Exploring Timing of Pregnancy Impact on Income Over Feed Cost
- O Dairy Reproductive Economic Analysis

Production

- Milk Curve Fitt
- Decision Support System Program for Dairy Production and Expansion
- @ Economic Analysis of Switching from 2X to 3X Milking
- Lactation Benchmark Curves for Wisconsin
- @ Economic Evaluation of using rbST
- Alfalfa Yield Predictor: Using a Computer Application to Predict Irrigated Alfalfa Yield

Replacement

- The Economic Value of a Dairy Cow
- O Value of a Springer
- Heifer Replacement
- O Heifer Break-Even
- Herd Structure Simulation

Financial

- LGM-Dairy Analyzer
- Working Capital Decision Support System
- The Wisconsin Dairy Farm Ratio Benchmarking Tool
- O Decision Support System Program for Dairy Production and Expansion
- Least Cost Optimizer
- O LGM-Dairy Premium Sensitivity
- Return to Labor
- Estimate Your Mailbox Price
- LGM Dairy Feed Equivalent Calculator
- Net Guarantee Income Over Feed Cost for LGM-Dairy

Price Risk

- O LGM-Dairy Premium Sensitivity
- Least Cost Optimizer
- O LGM Premium
- LGM Dairy Feed Equivalent Calculator
- Milk Component Price Analysis

Environment

- O Dairy Nutrient Manager
- O Grazing-N: Application that Balances Nitrogen in Grazing Systems
- Seasonal Prediction of Manure Excretion
- O Dynamic Dairy Farm Model

Why decision support tools?

Farm specific decision-making

Assessment should be farm specific

Every farm is different

Farm conditions change dynamically

Decisions should adjust

Market conditions change permanently

Impact decisions

User-friendly applications

Easy to use, still robust

Rationale

True price of a feed

Cows need nutrients

They don't need "feeds"

Feed price ≠ nutrient value

Feeds have various nutrients

True feed price

∑nutrient values

Best deal

Feeds with lower true price

Nutrient value

Simple example

Actual

```
Corn: 09\%CP + 2.00Mcal/kg = $0.267/kg (89\%DM)
```

SBM: 54%CP + 2.20Mcal/kg = \$0.587/kg (89% DM)

Then

CP: \$0.748/kg DM

Mcal: \$0.116/Mcal

True

```
Corn: [(9%cp)($0.748/kg)+(2Mcal)($0.116/Mcal)]*89%=$0.267
```

SBM:[(54%CP)(\$0.748/kg)+(2.2Mcal)(\$0.116/Mcal)]*89%=\$0.587

Nutrient value How about 3 nutrients?

Referee Feeds

	CP	Nel	NDF	Price
	%	Mcal/kg	%	\$/kg
Corn	9	2	9	0.30
SBM	54	2.2	15	0.66
Hay	18	1.3	50	0.13
	\$/kg	\$/Mcal	\$/kg	
Value (\$)	0.7903	0.1306	-0.0036	

Nutrient value

Pricing another feed

				Price
	CP	Nel	NDF	\$/kg
	\$/kg	\$/Mcal	\$/kg	
Value (\$)	0.7903	0.1306	-0.0036	
	%	Mcal/kg	%	
Corn Silage	7%	0.67	42%	\$0.14

Priced Feed

E.g., market price of Corn Silage \$0.161/kg

Overpriced!

0.161/0.140 = 115% **15%** above predicted!

Nutrient value

More realistic

More nutrients or more referee feeds

Solution becomes more complicated

Market prices are as fed

Solution should be on a dry matter (DM) basis

Different number of feeds and nutrients

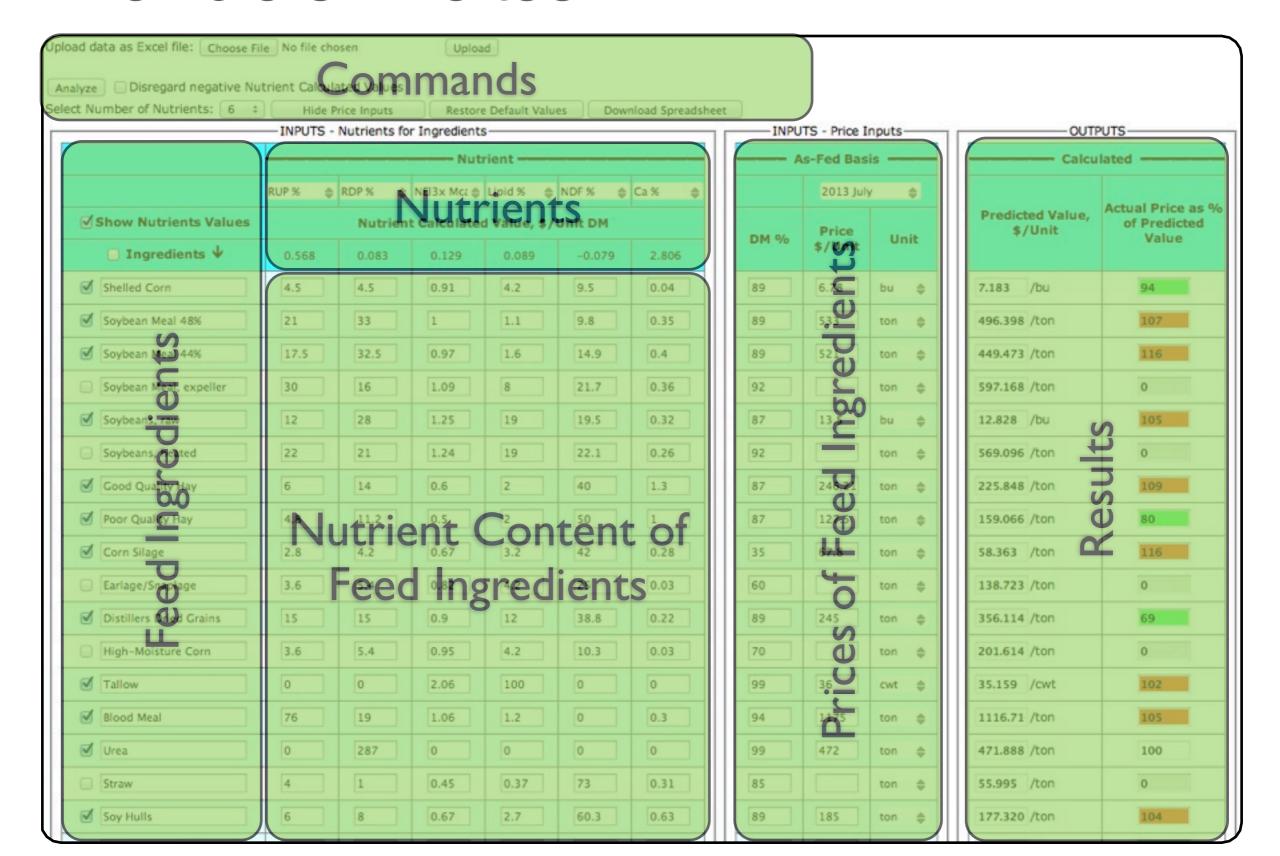
Matrix becomes irregular Always #feeds ≥ #nutrients Solution is an average of nutrient value in all feeds

Not all feeds should form the price

Referee = Pricers

Others = Priced

FeedVal2012 Online tool


Calculate values
Individual nutrients

Predicts prices Feed ingredients

Gives relative prices Compared to market

FeedVal2012

A flexible online tool

Best and worst purchase

July 2012

Overpriced
Whole
cottonseed
\$370/\$258 =
144% predicted

Bargain
Wet distillers
\$76/\$172 =
44% predicted

Show Nutrients Values		Nutrient Calculated Value, \$/Unit DM						
☐ Ingredients Ψ	0.568	0.083	0.129	0.089	-0.079	2.806		
Shelled Corn	4.5	4.5	0.91	4.2	9.5	0.04		
Soybean Meal 48%	21	33	1	1.1	9.8	0.35		
Soybean Meal 44%	17.5	32.5	0.97	1.6	14.9	0.4		
Soybean Meal, expeller	30	16	1.09	8	21.7	0.36		
Soybeans, raw	12	28	1.25	19	19.5	0.32		
Soybeans, heated	22	21	1.24	19	22.1	0.26		
Good Quality Hay	6	14	0.6	2	40	1.3		
Poor Quality Hay	4.8	11.2	0.5	2	50	1		
Corn Silage	2.8	4.2	0.67	3.2	42	0.28		
Earlage/Snaplage	3.6	5.4	0.82	4.2	25	0.03		
Distillers Dried Grains	15	15	0.9	12	38.8	0.22		
High-Moisture Corn	3.6	5.4	0.95	4.2	10.3	0.03		
Tallow	0	0	2.06	100	0	0		
Blood Meal	76	19	1.06	1.2	0	0.3		
Urea	0	287	0	0	0	0		
Straw	4	1	0.45	0.37	73	0.31		
Soy Hulls	6	8	0.67	2.7	60.3	0.63		
Corn Gluten Feed	7.5	16.5	0.79	3.5	35.5	0.7		
Canola Meal, expeller	17	21	0.8	5.4	30	0.75		
Canola Meal, solvent	13.5	24.5	0.74	1.5	29.8	0.75		
Cottonseed Meal	20	25	0.78	1.9	30.8	0.2		
Wheat Middlings	4.5	14	0.76	4.3	36.7	0.16		
Whole Cottonseed	6	18	0.88	19.3	50.3	0.17		
Hi-Pro Distillers	22	22	0.9	4	25	0.22		
Wet Distillers	12	18	0.92	15	38.8	0.22		
Brewers Dried Grains	15	15	0.78	5.2	47.4	0.3		
Wet Brewers	12	18	0.78	5.2	47.1	0.35		
Malt Sprouts	9	21	0.68	2.3	47	0.24		
Sunflower Meal	8	21	0.63	1.4	40.3	0.48		

	2013 July	4 0		Actual Price as 9
M %	Price \$/Unit	Unit	Predicted Value, \$/Unit	of Predicted Value
19	6.78	bu \$	7.183 /bu	94
9	533	ton ¢	496.398 /ton	107
9	521	ton \$	449.473 /ton	116
2		ton ¢	597.168 /ton	0
7	13.5	bu \$	12.828 /bu	105
2		ton \$	569.096 /ton	0
7	246.21	ton \$	225.848 /ton	109
7	127.5	ton \$	159.066 /ton	80
5	67.8	ton \$	58.363 /ton	116
0		ton \$	138.723 /ton	0
9	245	ton \$	356.114 /ton	69
0		ton \$	201.614 /ton	0
9	36	cwt #	35.159 /cwt	102
4	1175	ton \$	1116.71 /ton	105
9	472	ton \$	471.888 /ton	100
5		ton \$	55.995 /ton	0
9	185	ton ¢	177.320 /ton	104
9	162	ton \$	272.311 /ton	59
9	362	ton ¢	390.617 /ton	93
9		ton \$	340.687 (ton	0
9	390	ton ¢	388.124 /ton	100
9	190	ton \$	203.984 /ton	93
9	370	ton ¢	257.820 /ton	144
9		ton \$	443.992 /ton	
5	76	ton ¢	171.689 /ton	44
9		ton \$	309.630 /con	0
5		ton ф	80.516 /ton	0
9		ton \$	227.789 /ton	0
9	240	ton ф	226.176 /ton	106
9	270	ton \$	194.628 /ton	139

What's true price for

July 2012: RUP, RDP, NEI, peNDF

			Price (\$/unit)		% of
Feed	DM	Unit	Market	Predicted	Predicted
Wet distillers	45	ton	76	184	41
Poor Quality Hay	87	ton	128	173	74
Molasses	89	ton	220	218	101
Barley	89	cwt	15	13	116
Tallow	99	cwt	36	28	130
Brewers Dried Grains	89	ton	-	354	-
Whey	20	ton	-	51	_

Video demonstration Available at DairyMGT.info

FeedVal 2012

V.E. Cabrera, L. Armentano, R.D. Shaver Department of Dairy Science

Acknowledgement:

This project is supported by Agriculture and Food Research Initiative Competitive Grant No. 2011-68004-30340 from the USDA National Institute of Food and Agriculture

United States Department of Agriculture
National Institute of Food and Agriculture

Supporting Documents

- Tool overview
- By-Product Feedstuffs in Dairy Cattle Diets in the Upper Midwest
- NRC Feed Tables

Upload data as Excel file:

Analyze Disregard nega	ative Nutrier	nt Calculate	ed Values					
elect Number of Nutrients: 6	▼ Hic	le Price Inpu	ıts Res	tore Default \	/alues	Download Spre		
INPUTS - Nutrients for Ingre	dients							
		4 1 4	Nut	rient ——				
✓ Ingredient	RUP% ▼	RDP% ▼	NEl3x IV ▼	Lipid% ▼	peNDF	▼ Ca% ▼		
		Nutrient Calculated Value, \$/Unit DM						
Ingredients ↓								
Shelled Com	4.5	4.5	0.91	4.2	0	0.04		
Soybean Meal 48%	21	33	1	1.1	0	0.35		
Soybean Meal 44%	17.5	32.5	0.97	1.6	0	0.4		
Soybean Meal, expelle	30	16	1.09	8	0	0.36		
Soybeans, raw	12	28	1.25	19	0	0.32		
Soybeans, heated	22	21	1.24	19	0	0.26		
Good Quality Hay	6	14	0.6	2	35	1.3		

Browse_

Upload

INPUTS - Price Inputs OUTPUTS

As-Fed Basis							
	2012 0	2012 Octob∈ ▼					
DM %	Price \$/Unit	Unit					
89	7.92	bu 💌					
89	491.2	ton 💌					
89	441.2	ton 💌					
92	466.2	ton 🕶					
87	543	ton 🕶					
92	700	ton 💌					
87	248.666	ton 🕶					

Calculated ———							
Predicted Value, \$/Unit	Actual Price as % of Predicted Value						

Monthly market watch

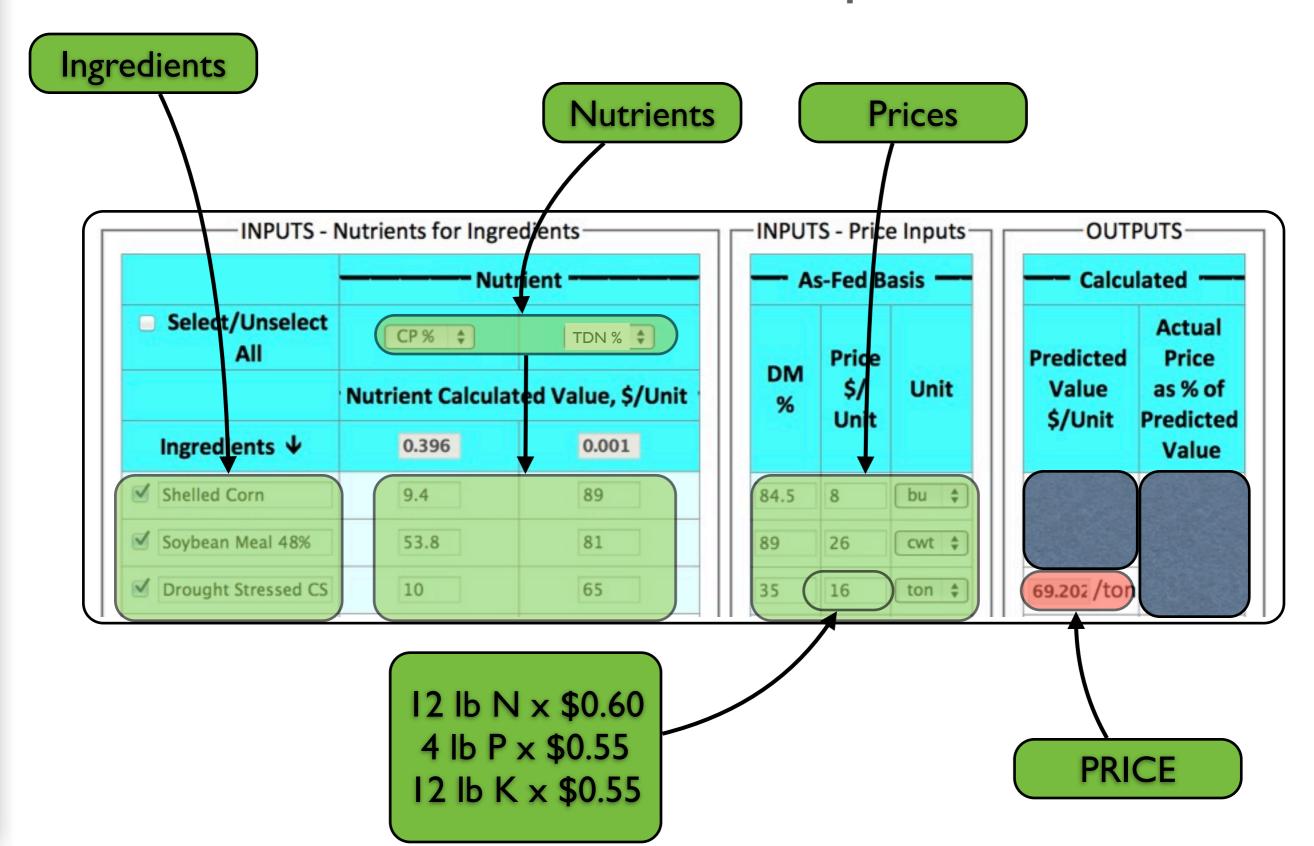
Best feed prices, ranked

Bargains and overpriced

- •27 referee feeds
- •4 nutrients:
 - •RUP, RDP, NEL, peNDF
- FOB Midwest US prices

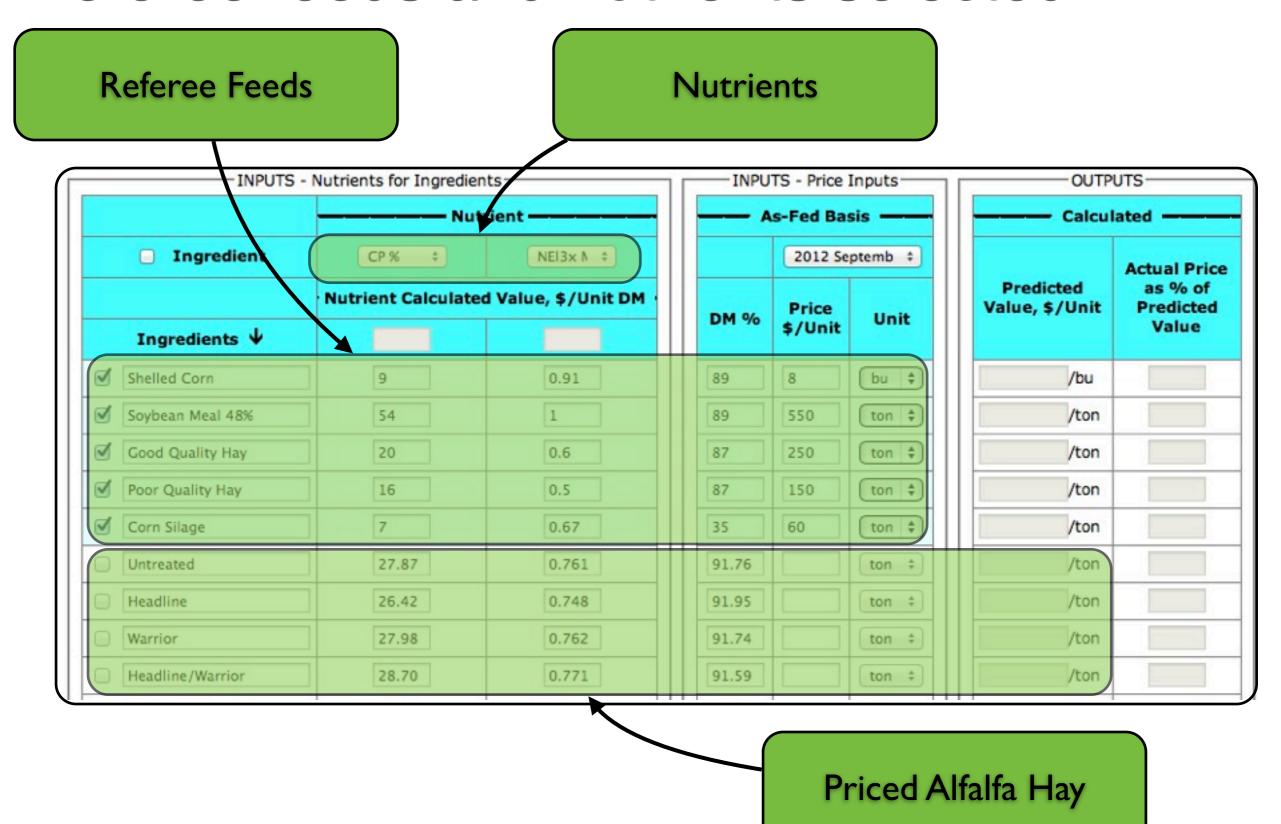
Predicted prices

•13 feeds

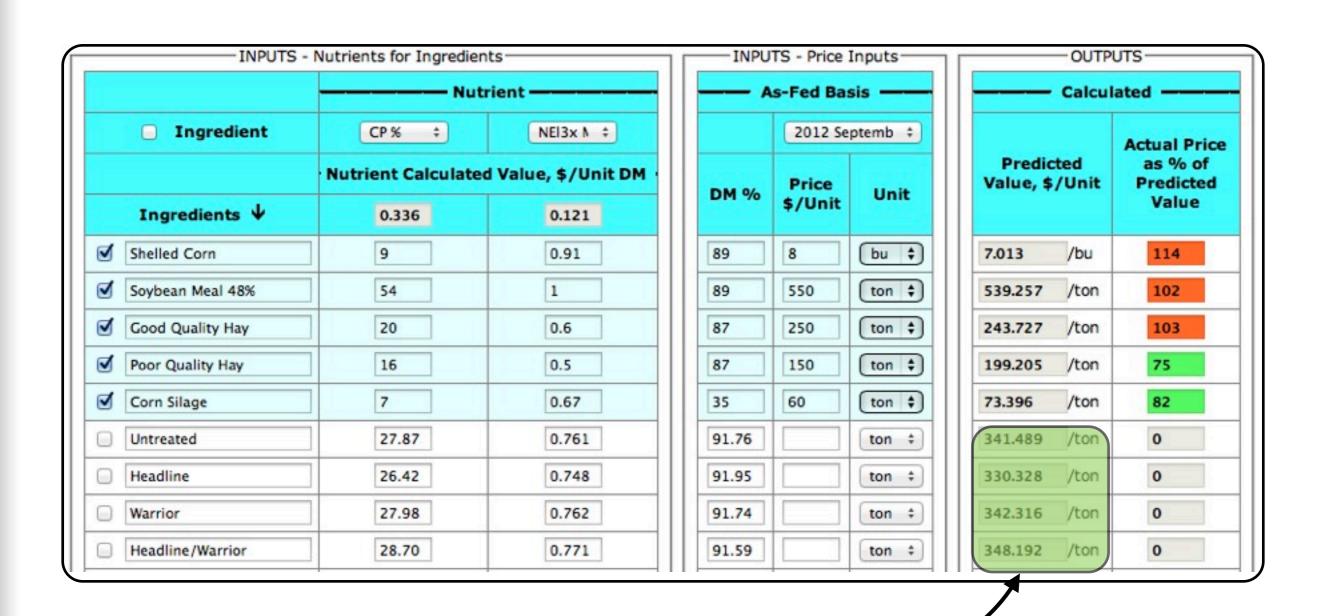

recount accionness se to our			Feed Prices (\$/Unit)		Actual Price as %	Best-buy
Ingredient	DM %	Unit	Market	Predicted	of Predicted Value	Ranking
Wet Distillers	45	ton	76.0	183.9	41	1
Corn Gluten Feed	89	ton	162.0	286.7	57	2
Distillers Dried Grains	89	ton	245.0	383.4	64	3
Poor Quality Hay	87	ton	127.5	172.8	74	4
Wheat Middlings	89	ton	190.0	247.0	77	5
Soy Hulls	89	ton	185.0	231.1	80	6
Hominy	89	ton	220.0	257.8	85	7
Wheat	89	bu	6.6	7.7	85	8
Corn Gluten Meal	89	ton	600.0	698.4	86	9
Corn Silage	35	ton	67.8	75.2	90	10
Shelled Corn	89	bu	6.8	7.6	90	11
Sunflower Meal	89	ton	240.0	259.3	93	12
Cottonseed Meal	89	ton	390.0	416.8	94	13
Canola Meal, expeller	89	ton	362.0	387.0	94	14
Molasses	89	ton	220.0	218.3	101	15
Urea	99	ton	472.0	454.7	104	16
Oats	89	ton	263.1	251.3	105	17
Soybeans, raw	87	bu	13.5	12.5	108	18
Soybean Meal 48%	89	ton	533.0	491.0	109	19
Blood Meal	94	ton	1175.0	1072.4	110	20
Good Quality Hay	87	ton	246.2	213.5	115	21
Soybean Meal 44%	89	ton	521.0	449.3	116	22
Barley	89	cwt	14.6	12.6	116	23
Linseed Meal	89	ton	415.0	351.0	118	24
Beet Pulp	89	ton	270.0	217.2	124	25
Whole Cottonseed	89	ton	370.0	293.4	126	26
Tallow	99	cwt	36.0	27.7	130	27

Soybean Meal, expeller	92	ton	594.6
Soybeans, heated	92	ton	559.8
Earlage/Snaplage	60	ton	162.2
High-Moisture Corn	70	ton	213.9
Straw	85	ton	133.0
Canola Meal, solvent	89	ton	343.8
Hi-Pro Distillers	89	ton	460.8
Brewers Dried Grains	89	ton	354.4
Wet Brewers	25	ton	92.6
Malt Sprouts	89	ton	281.0
Wheat Bran	89	ton	230.1
Corn Stover	80	ton	105.4
Whey	20	ton	51.2

¹Analysis performed using UW-Madison FeedVal 2012: http://dairvmgt.info/tools/feedval_12/index.php including 27 feed ingredients displayed in top part of the table, 4 nutrients: RUP, RDP, NEL, and peNDF; and using general wholesale FOB Midwest input prices. These results might change substantially depending on: local input prices, nutrients, and feed ingredients used for price formation. For more in-depth analyses please use the FeedVal 2012 decision support tool and local input prices.


Pricing drought stressed silage

Nutrient content and field expenses


Fungicide treated alfalfa

Referee feeds and nutrients selected

Fungicide treated alfalfa

Referee feeds and nutrients selected

Priced Alfalfa Hay

Other FeedVal2012 applications

In Wisconsin and elsewhere

Pricing organic barley

Imported from Canada to US

Pricing feeds with no market prices

- Whey
- Straw
- Corn stover

Determine nutrient values

- •CP
- •NEL
- NDF

