

Strategies to Improve Economic Efficiency of the Dairy

V.E. Cabrera

University of Wisconsin-Madison Dairy Science

This site is designed to support dairy farming decision-making focusing on model-based scientific research. The ultimate goal is to provide user-friendly computerized decision support tools to help dairy farmers improve their economic performance along with environmental stewardship.

University of Wisconsin

University of Wisconsin - Madison UW - Cooperative Extension UW - Dairy Science Dairy Cattle Reproduction Dairy Cattle Nutrition Milk Quality **UW Dairy Nutrient Understanding Dairy Markets UW Center for Dairy Profitability**

Latest Projects

Improving Dairy Farm Sustainability Genomic Selection and Herd Management Dairy Reproduction Decision Support Tools Strategies of Pasture Supplementation Improving Dairy Cow Fertility

Contact

Associate Professor Extension Specialist in Dairy Management 279 Animal Sciences 1675 Observatory Dr. Madison, WI 53706 (608) 265-8506 vcabrera@wisc.edu More »

Victor E.Cabrera, Ph.D.

Helpful Link

Repro Money Program

Tools

A collection of the state-of-the-art and scientific-based dairy farm management decision support tools that are user-friendly, interactive, robust, visually attractive, and self-contained. These tools count with associated documentation and video demonstrations. Technical support on their application is also available upon request.

Feeding

- > FeedVal 2012
- Grouping Strategies for Feeding Lactating Dairy Cattle
- Optigen® Evaluator
- Income Over Feed Supplement Cost
- Dairy Extension Feed Cost Evaluator
- Corn Feeding Strategies
- Income Over Feed Cost
- > Dairy Ration Feed Additive Break-Even Analysis

Heifers

- Heifer Pregnancy Rate
- > Cost-Benefit of Accelerated Liquid Feeding Program for Dairy Calves
- > Economic Value of Sexed Semen Programs for Dairy Heifers
- Heifer Replacement
- > Heifer Break-Even

Reproduction

- Wisconsin-Cornell Dairy Repro: A Reproductive Programs Economics Analysis Tool. Replaces previous tools UW-DairyRepro\$ and UW-DairyRepro\$Plus.
- > The Economic Value of a Dairy Cow
- > Economic Value of Sexed Semen Programs for Dairy Heifers
- Exploring Timing of Pregnancy Impact on Income Over Feed Cost
- > Dairy Reproductive Economic Analysis
- Heifer Pregnancy Rate
- > Retention Pay-Off (RPO) Calculator

Production

- Milk Curve Fitter
- Decision Support System Program for Dairy Production and Expansion
- Economic Analysis of Switching from 2X to 3X Milking
- Lactation Benchmark Curves for Wisconsin
- Economic Evaluation of using rbST
- Alfalfa Yield Predictor: Using a Computer Application to Predict Irrigated Alfalfa Yield

Replacement

- > The Economic Value of a Dairy Cow
- Value of a Springer
- Heifer Replacement
- > Heifer Break-Even
- Herd Structure Simulation
- > Retention Pay-Off (RPO) Calculator

Health

Economic Evaluation of CholiPEARL

Financial

- LGM-Dairy Analyzer
- Working Capital Decision Support System
- The Wisconsin Dairy Farm Ratio Benchmarking Tool
- Decision Support System Program for Dairy Production and Expansion
- Least Cost Optimizer
- LGM-Dairy Premium Sensitivity
- Return to Labor
- Estimate Your Mailbox Price
- LGM Dairy Feed Equivalent Calculator
- Net Guarantee Income Over Feed Cost for LGM-Dairy

Price Risk

- LGM-Dairy Premium Sensitivity
- Least Cost Optimizer
- > LGM Premium
- LGM Dairy Feed Equivalent Calculator
- Milk Component Price Analysis

Environment

- Dairy Nutrient Manager
- Grazing-N: Application that Balances Nitrogen in Grazing Systems
- Seasonal Prediction of Manure Excretion
- Dynamic Dairy Farm Model
- Dairy Management-UW Extension 2014

Considering nutritional grouping

Take home messages

Opportunity to improve economic efficiency Considering additional nutritional groups

Improved profitability
IOFC gains far exceed
additional expenses or
losses

Diets closer to requirements

Saves feed costs and increases income over feed costs

Additional benefits

- ‡ environmental concerns
- 1 health conditions

Feeding all lactating cows equally

A larger number of cows are overfed

Same ration (TMR) to all cows (groups)

All lactating cows receive same nutrient density diet

Preferred "high" rations

Low producing animals receive more nutrients than required

One diet for all Would never optimize production and efficiency

Improve feed efficiency

+ feeding groups

Improved nutrient use efficiency

Diet closer to cow requirements

Less overfed animals

Decreased over conditioned cows

Less nutrient excretion

Decreased environmental concerns

Wang et al., 2000

Lower feeding costs

Higher milk income over feed cost

Why farmers do not group more?

Trying to find most important constraints

2-page mailed survey

Results (responses)

- 196 WI farms
- 211 MI farms

Constraints to feeding more ration groups

- 1. Milk drops when cows are moved
- 2. Desire to keep management simple
- 3. Conflicts with grouping for reproduction
- 4. Farm facilities do not allow it
- 5. Not enough labor or personnel to handle it

Strategies for grouping cows

Depend on farm and herd characteristics

Individual cow nutrient requirements

- Energy
- Protein (RUP, RDP, MP)

Number of lactating cows on the herd States

Farm characteristics

Capacity to handle lactating feeding groups

Adapted from McGilliard et al., 1983; St-Pierre and Thraen, 1999

Milk (and components)

Cow-specific lactation curves

Milk based on

- Herd ME305
- Cow PPA or ME305
- Stochasticity

Components

- Herd
- Stochasticity

Base function

- Woods
- Adjusted Woods

De Vries, 2001

Initial individual cow BW

Cow-specific BW

- 1. Available from farm records, or
- 2. Stochastic distribution

Daily BW and BCS change according to:

- Lactation
- DIM
- Stochasticity

Days after calving

Criteria for nutritional grouping

Several criteria exist

Days after calving (DIM)

Based on stage of lactation

Fat (protein) corrected milk

Based on level of production measured as F(P)CM

Dairy merit

Function of both F(P)CM and BW

Cluster

Seems to be MOST efficient criterion

McGilliard et al., 1983 St-Pierre and Thraen, 1999

Nutritional grouping

Two main types of groups

Obligated groups

- Fresh (< 22 DIM)
- Dry (~> 220 DCC)
- Daily assigned

Optional groups

- Actual additional groups
- Daily assigned
- Monthly re-grouped

Cow and herd simulation

Monte Carlo approach

Next event scheduling

- Pregnancy
- Abortion
- Dry-off
- Parturition
- Involuntary culling
- Death

Two-step

- •1. Binary outcome of event:
 - Happens or not
 - E.g., uniform distribution
- •2. DIM of the occurrence
 - When it happens
 - E.g., Weibull distribution

Immediate replacement

After a cow leaves the herd

Replicates

 1,000 replicates for each cow within specific herd

Cow simulation

Follows actual COW card

Variable	Unit	Description
Cow ID	#	Cow identification
Parity	#	Lactation
DIM	d	Days in milk, days after calving
DCC	d	Days in pregnancy (DIP)
Fat	%	Fat component on milk
Protein	%	Protein component on milk (%)
PPA*	%	Predicted producing ability
ME 305*	kg/305 d	Mature equivalent milk production
BW	kg	Live body weight

^{*}Either PPA or ME305 used to assess cow's milk class. PPA preferred if available

Studied herds

All data collected at the cow-level

Herd (size)	570	787	727	331	1460
Herd ME 305, kg	16,140	12,884	13,897	13,348	14,188
1 st lactation, %	43	39	39	38	45
Average DIM	187	178	201	208	189
21-d PR, %	18	19	19	17	18
Culling risk, %	32	37	36	35	40
Abortion, %	7	11	11	16	7
BW available	X	X	√	√	X

Herd 331, nutritional diets

Herd 787, nutritional diets

Months after starting simulation

Cow 6338(727) = 78% milk, 1 yr

Cow10020(727) = 92% milk, 1 yr

Cow 928(727) = 109% milk, 1 yr

Cow 6320 (727) = 100% milk

Economic efficiency

Energy efficiency

Nitrogen efficiency

Impact of milk depression $\frac{9.1 \text{ kg}}{\Delta \text{group}}$

Decision support tool...

http://DairyMGT.info

A simplified online tool

Herd-specific assessments (DairyMGT.info)

Additional costs and benefits

Impacts grouping feeding strategies

Management cost

- Additional labor
- Extra management

Avoid costs

 Additives and supplements savings

Milk depression

Cow social interactions

Grouping Strategies

Farm/herd possibilities and decision-making

Tool demonstration

Grouping Illustration

Economic impact of nutritional grouping

Current Situation			
Lactating Cows	470		
Current Groups	None		
NEL Mcal/lb	0.80		
CP, %	17		

Possible Situation			
Groups	3		
Group Sizes	100, 100, 270		
Milk loss	2.27 kg/d x 4 d		
Added Costs	\$1,000/month		
Saved	None		

Decision Support System Illustration

Cluster grouping criteria

Current Situation				
Group	Cows	NEL	CP	IOFC
	#	Mcal/lb	%	\$/cow.d
All	470	0.80	17.00	6.9

Annual value of grouping \$135,000/herd

Possible Situation					
Group	Cows	NEL	CP	IOFC	
	#	Mcal/lb	%	\$/cow.d	
1	100	0.62	13.07	4.7	
2	100	0.65	14.18	7.2	
3	270	0.71	16.05	9.3	
All	470	0.68	15.02	7.9	

Wisconsin herds analysis

Analysis from dairy farm records

30 Wisconsin dairy farms

No grouping vs. 3 groups

Same size groups

Grouping criterion

Cluster

Same prices for all

- •\$0.35/kg milk
- •\$0.315/kg CP
- •\$0.1174/Mcal NEI

Projected body weight

- •500 kg primiparous
- 600 kg multiparous

Analysis from dairy farm records

30 Wisconsin dairy farms

	Lactating cows (n=30)	No grouping	3 Groups	Gain	
		Income Over Feed Cost \$/cow.yr			
Minimum	<200	697	1,059	161	
Mean	788	2,311	2,707	396	
Maximum	>1,000	2,967	3,285	580	

Increase of IOFC (\$/cow per year)

- Between 7 and 52%
- •Mean = \$396
- •Range = \$161 to \$580

Acknowledgements

This project is supported by Agriculture and Food Research Initiative Competitive Grant No. 2011-68004-30340 from the USDA National Institute of Food and Agriculture

United States Department of Agriculture National Institute of Food and Agriculture

