

Critical aspects to maximize dairy farm profitability

Net margin of a dairy enterprise

Structure of costs on a dairy farm

Data from a farm in north Spain

Milk income over feed cost

(Milk) x (Price) -

(Feed) x (Cost)

Margin

(Milk) x (Price) -

Feed Price

Feed Efficiency

BIG Costs make the difference

Feed

- 1 Better purchase of feeds
- Nutritional grouping
- 2 Efficiency of use of protein
- Formulation for maximum IOFC
- Θ . . .

Replacements

- Control pf mortality of calves and heifers
- Fast growth of replacements
 - Weight and height to first breeding
 - Genomic selection of best animals
 - ₩ ..

Other opportunities of improvement

- **Better decisions of replacement**
 - 4 Other important considerations

DairyMGT.info

The largest selection of dairy farm decision support tools

Large information

- **Projects**
- **Publications**
- **Presentations**
- Links

This site is designed to support dairy farming decision-making focusing on model-based scientific research. The ultimate goal is to provide user-friendly computerized decision support tools to help dairy farmers improve their economic performance along with environmental stewardship.

Heart of DairyMGT.info

Tools to Support Decision-Makin Conter for Dairy Profitability

University of Wisconsin - Madison UW - Cooperative Extension UW - Dairy Science Dairy Cattle Reproduction Dairy Cattle Nutrition Milk Quality **UW Dairy Nutrient**

University or wisconsin

UW-Dairy Management

Decision Support TOOLS

Latest Projects

Improving Dairy Farm Sustainability Genomic Selection and Herd Management Dairy Reproduction Decision Support Tools Strategies of Pasture Supplementation Improving Dairy Cow Fertility

Contact

Associate Professor Extension Specialist in Dairy Management 279 Animal Sciences 1675 Observatory Dr. Madison, WI 53706 (608) 265-8506 vcabrera@wisc.edu More »

Victor E.Cabrera, Ph.D.

Helpful Link

Repro Money Program

DairyMGT.info: Tools

>40 Decision Support Tools

Many areas of dairy farm management

- Feed
- Replacements
- Reproduction
- Production
- Replacement
- Environment
- Finances
- Genetics
- Health
- Θ ...

Net Guarantee Income Over Feed Cost for LGM-Dairy

Anatomy of tools

How to explore and use them

Better purchase of feeds

Better price of feeds

- Ideal to have feeds that provide better price per nutrient
- Cows require nutrients, not feeds

Feeds provide different amounts of nutrients

- Price per unit of:
- Protein
- Energy
- Ecc.

How to know which feeds have better nutrient price?

 Estimate the price per nutrient in different feeds

Has to consider the wastage

 Different feeds have different levels of waste

Analyze the value per nutrient

An example of protein

How much cost the protein from alfalfa with respect to the one of soybean meal (SBM)?

Feed	Protein	DM	€/Tm	€/Tm protein
FEED	%NUT	%DM	COST	(COST)÷(%NUT) (%DM)
Alfalfa	18%	87%	220	1405
SBM	44%	89%	460	1175

Protein from alfalfa is 20% more expensive than the one from SBM!

Feed	Protein	DM	€/Tm	€/Tm protein
SBM	44%	89%	460	1175
Efficiency of conversion		22%		5341
		26%		4519
		35%		3357

Perform your own analysis with multiple feeds and multiple nutrients

Use FeedVal v 6.0

Wisconsin

Provides you the ACTUAL value of feeds according to nutrient composition and market

	DI	rices										
			Nutr		trients	ients		s-Fed Basi	is	Calc	Calculated	
		Ingredient	RUP %	RDP %	NEI3x Mcal/lb	peNDF %	DM %	Unit	Price* \$/Unit	Predicted Value \$/Unit	Actual Price as % of Predicted Value	
1	✓	Shelled Corn	4.5	4.5	0.91	0	86	kg 🗘	0.15	0.197/kg	76	
2	✓	Soybean Meal 48%	21	33	1	0	89	kg 🗘	0.38	0.411/kg	92	
3	✓	Soybean Meal 44%	17.5	32.5	0.97	0	89	kg 🗘	0.36	0.374/kg	96	
4		Soybean Meal, expeller	30	16	1.09	0	92	kg 💲		0.496/kg		
5	✓	Soybeans, raw	12	28	1.25	0	87	kg 🗘	0.35	0.358/kg	98	
6		Soybeans, heated	22	21	1.24	0	92	kg 🗘		0.457/kg		
7	~	Good Quality Hay	6	14	0.6	35	87	kg 🗘	0.19	0.170/kg	112	
8	✓	Poor Quality Hay	4.8	11.2	0.5	50	87	kg 🗘	0.10	0.137/kg	73	
9		Corn Silage	2.8	4.2	0.67	30	35	kg 🗘	0.04	0.056/kg	71	
10		Earlage/Snaplage	3.6	5.4	0.82	0	60	kg 🗘		0.123/kg		
11		Distillers Dried Grains	15	15	0.9	0	89	kg 🗘	0.15	0.312/kg	48	
	20) ; ; o o to o f	3.6	5.4	0.95	0	70	kg 🗘		0.161/kg		
+	3 U	years of	0	0	2.06	0	99	kg 🗘	0.54	0.395/kg	137	
experience in			76	19	1.06	Algorithms similar to the ones used in St. Pierre						
-			0	287		and Glamocic, 2000. JDS 83:1402 1411.						
Wisconsin and Glamocic, 2000. JDS 83:1402 1411.												

FeedVal v6.0

Acquire the best feeds in September 2015. All in \$/Tm with market prices for Midwest (USA).

Feed	Market price	Estimated price	% of the estimated	Rank from 26
Corn	\$150	\$198	76%	7
SBM	\$360	\$375	96%	13 V
Wheat	\$200	\$191	105%	19
Cotton	\$340	\$236	144%	26

% Estimate: (Market price/Estimated price)*100

Therefore: Less % is better.

FeedVal v6.0

Summary

Estimates the price of feeds based on

- Nutrient content
- Referee feeds
- Market price

Supports:

- Less costs of feeds
- Greatest IOFC and profitability

Help decisions regarding:

- Purchase feed
- Diet formulation
- Use of feeds

2

Nutritional grouping: +TMR

Logic

Use of only one diet for all lactating (e.g., 1 TMR):

- All cows receive same diet
- High diets are preferred
- Cows with lower production or requirements are heavily over-fed

Feed efficiency improves with multiple groups:

- Saving costs of nutrients
- Less cows under or over fed
- Less environmental concerns
- Greater IOFC

Strategies for grouping

Depends on the farm and herd

Needed individual requirements:

- Energy (NEL)
- Protein (CP)
- Dry matter intake (DMI)

Number and states of cows

- Total cows in production
- States of the cows

Characteristics of the farm

Capacity of handle different groups

Criteria to group the cows

Several criteria, some are better

Days in milk (DIM)

 Based on state during lactation: early, medium, late, ...

Milk corrected by fat (protein)

 Based on production level: high, medium, low, ...

Milk and BW

Function of production and weight

Cluster

Seems the most EFFICIENT

Strategies of grouping tool

Analyzes the value of **GROUPING**

Grouping Strategies for Feeding Lactating Dairy Cattle

V.E. Cabrera, UW-Madison Dairy Science

Analysis of 30 farms in Wisconsin

Data collected at cow level

Consistent prices for all

Milk: \$0,35/kg

CP: 0,32/kg

NEL: 0,1174/Mcal

1 group vs. 3 groups

Groups of same size

Criteria for grouping

Cluster

BW estimated based on

1° Lactation: 500 kg

>1° Lactation: 590 kg

Nutritional groups on 30 farms

Cluster grouping in Wisconsin

	Size of farms (n=30)	1 group	3 groups In	nprovement		
		Income over feed cost (IOFC) \$/cow/year				
Min	<200	697	1,059	161		
Avg	788	2,311	2,707	396		
Max	>1,000	2,967	3,285	580		

Improvement (\$/cow/year)

- Range 7% to 52%
- Average = \$396
- Range = \$161 to \$580

Cabrera et al., 2012 (Four-State Management and Nutrition Proceedings)

Valuation of grouping published

Reference		G^2	Difference in income over feed constant (\$/cow per yr)				
			3-TMR ⁵ - 1-TMR	3-TMR - 2-TMR	2-TMR - 1-TMR		
Smith et al., 1978	F	DIM			+30		
Cassel et al., 1984	F	DIM			-1174		
Williams and Oltenacu, 1992	S	C		+31			
Østergaard et al., 1996	S	DIM/M	3-TMR > 2-7	TMR > 1-TM	R net revenue ⁵		
St-Pierre and Thraen, 1999	S	C		+33	+44		
Earleywine, 2001	\mathbf{S}	DIM	+44		+38		
Cabrera et al., 2012	S	NE_{L}	+396				
Cabrera and Kalantari, 2014	S	NE_{L}	+46	+25	+21		
Kalantari et al., 2015 ⁶	S	C	+46	+8	+39		

Cabrera and Kalantari, 2015 (accepted 13 September 2015, JDS)

Grouping strategies Summary:

Opportunity to improve efficiency of nutrition

Considering that each group is more homogeneous in requirement

Better productivity

It is probably to improve productivity

Diets are closer to requirements

Less costs of nutrientes and therefore higher IOFC

Additional benefits

- ‡ environmental concerns
- 1 health conditions

Economic value of a cow

Knowing its value is critical for decision-making

Base for important decisions

Use a tool like "economic value of a dairy cow"

 Estimates the long-term net return of a cow (with respect to a potential replacement)

Knowing the value of all cows in the herd is crucial

- Decisions of replacement
- Optimize individual management according to value

OUTPUTS - Interactive Results	
Value of the cow, \$	764
Compared Against a Replacement, \$	
Milk Sales, \$	287
Feed Cost, \$	-175
Calf Value, \$	33
Non-reprodutive Cull, \$	-117
Mortality Cost, \$	-22
Reproductive Cull, \$	19
Reproduction Costs, \$	36
Replacement Transaction, \$	704
Herd Structure at Steady State	
Days in milk	222
Days to Conception	119
Percent of Pregnant	55

Graph of the net return of a cow (blue), with respect to a replacement (red). Difference of the long term of the cow and the replacement values becomes the economic value of a dairy cow.

Parameters can be defined directly in the yellow cells

Results are immediate!

For example, \$627 (green cell) is the value of the cow and \$1,969/year is the average net return of cow in the herd

Tool economic value of a cow Summary

Better profitability

Knowing the value of each cow allows to do more individual decisions: E.g., which animal to breed first and with what semen or if to treat an animal

Fundamental optimal decisions

keep or replace animals

Better efficiency of the herd

Over time, best animals will be selected in the herd

Additional usage

 Average net return of a cow responds to management parameters

4 Other FUNDAMENTAL considerations for profitability

Maximize the IOFC

Not the production

Efficiency of the use of nutrients

Specifically the use of protein in diet

Management of the information

Up-to-date, rigorous record keeping, ...

Use of "benchmarking"

 Compare against the past and other similar farms

Investment in training

Managers using the best technology

Estimates with tool income over feed supplement cost (DairyMGT.info), that uses functions from NRC (2001) Milk = f(RUP, RDP).

Systematic comparisons "benchmarking" Why the big differences 11.0 Highest=10.7610.5 10.0 \$2.17 IOFC, \$/cow/day 9.5 \$3.30 9.0 Farm6 = \$8.59/cow/day2nd Lowest 8.5 8.0 Lowest=7.46 7.5

Estimated with the Dairy Extension IOFC tool (DairyMGT.info)

Farm1 Farm2 Farm3 Farm4 Farm5 Farm6 Farm7 Farm8 Farm9

7.0

Thanks DairyMGT.info

