

Sustainable production of dairy farm systems

Victor E. Cabrera and Marion Dutreuil University of Wisconsin-Madison

Project Supported by USDA National Institute of Food and Agriculture Organic Agriculture Research and Extension Initiative Grant No. 2010-51300-20534

VI Brazilian Symposium on Sustainable Agriculture and III International Symposium on Sustainable Agriculture, Federal University of Viçosa, 26-27 September 2014

Sustainability

Profitable and environmentally friendly

Unprofitable farms

Run out of business

Environmental efficient

 Good balance input/ output of nutrients

Inefficient, more wasteful farms

 Destined to be unsustained

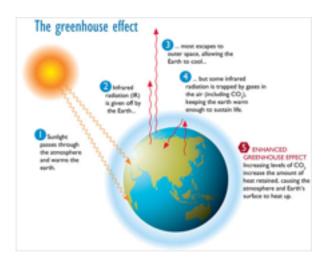
Increased productivity

 Likely improves efficiency and environment

Several nutrients are of interest

This study: Greenhouse gases vs. profitability

Introduction


GHG emissions need to be reduced

Milk production

 Estimated to be responsible of 4% of anthropogenic GHG

Livestock operations

 One of largest sources of agricultural GHG

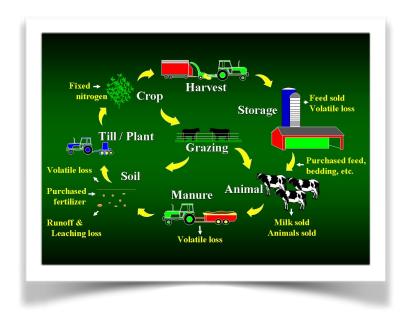
Whole farm system approach

High interaction among system components

Introduction

Simulation is a powerful tool

Feasible research enterprise


 Field trials are unpractical or impossible

Projections and trends

 More valid than precise numbers

Scenario analysis

 Allows to respond "whatif" questions

Objectives

Can GHG emissions be economically reduced?

Compare GHG emissions and economics among dairy farm systems

- Organic
- Grazing
- Conventional

Organic Dairy

Asses the impact of management strategies on GHG emissions and net return

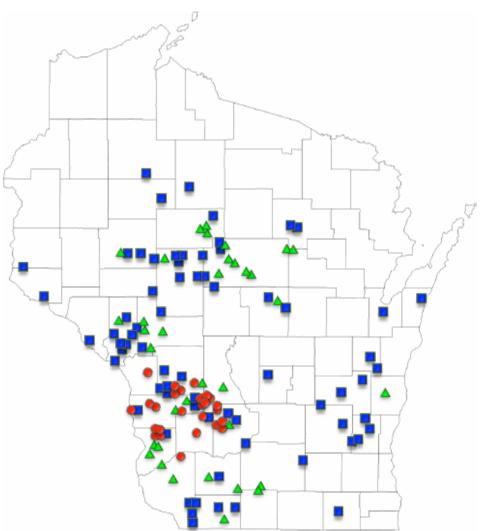
- Feeding strategies
- Manure management

Surveying

Interdisciplinary and comprehensive questionnaire (year 2010)

- Farm structure
- Labor
- Herd management
- Feeding
- Cropping
- Economics

1			
	United States Department of Agricultur National Institute of Food and Agricultur	NALIS CHER	<u>Extension</u>
and the results will onl any publication. Univer 2009-0401.	y be used in statistical s rsity of Wisconsin-Madis	ummaries. Individual farm inf son, Social and Behavioral Sci	will be kept <u>stricthe confidential</u> ormation will not be identified in ences, IRB Protocol Number SE
	int for his need to be s	signed prior to the start o	i the litter view
Co	ontact: Victor E. Cabr	our comments and suggesti era 608-265-8506 <u>vcabrera</u> 608-265-3090 <u>barham@aa</u>	@wisc.edu
Co	ontact: Victor E. Cabr	era 608-265-8506 <u>vcabrera</u>	@wisc.edu
Cc C	ontact: Victor E. Cabr	era 608-265-8506 <u>vcabrera</u>	@wisc.edu
Co C Enumerator:	ontact: Victor E. Cabro ontact: Brad Barham	era 608-265-8506 <u>vcabrera</u>	@wisc.edu e.wisc.edu

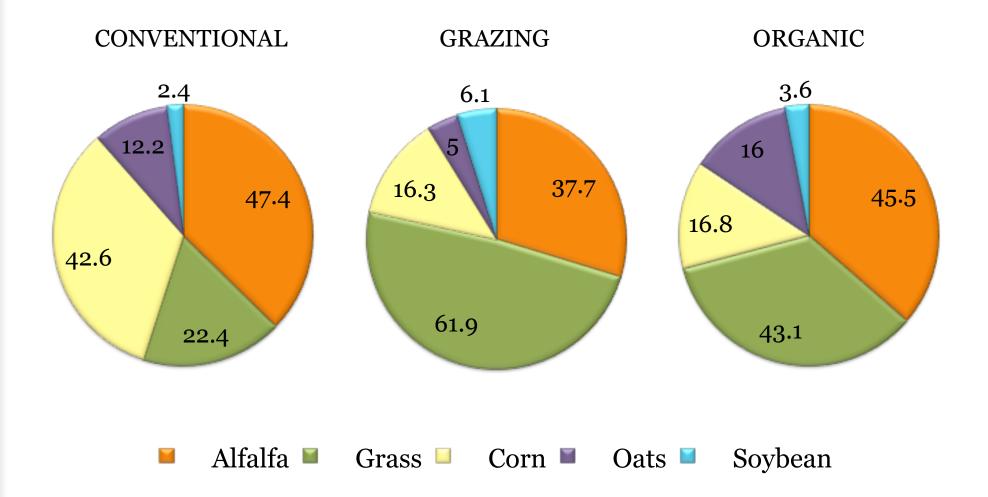

Wisconsin official lists of dairy cattle milk producers

- Organic = certified
- Grazing >30% DMI pasture
- Conventional = others

Surveyed farms (Wisconsin)

Farms used for defining representative farms

- 69 organic
- 30 grazing
- 27 conventional


Scaled farms

All farms in a system were scaled to averages

- 127 ha
 - 79 ha owned
 - 48 ha rented
- 85 adult cows (milking and dry)

	Scaled	CON	GRA	ORG	
# cows	85	128	94	74	
Hectares	127	162	121	119	

Simulated farms

Simulated farms

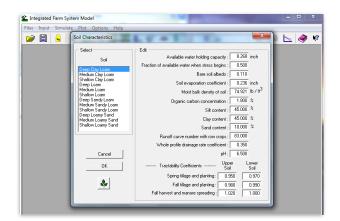
	CON	GRA	ORG	
First lactation cows (%)	36	30	31	
Milk production (L/cow per year)	9,820	7,256	6,159	
Milk price (\$/hL)	35.99	37.52	56.20	
Grazing strategy	Older heifers and dry cows	All weaned animals	All weaned animals	
Housing facilities	Free stall barn	Tie stall barn	Tie stall barn	
Manure storage	Top-loaded lined earthen basin	No storage (daily haul)	No storage (daily haul)	

Management strategies for CONVENTIONAL

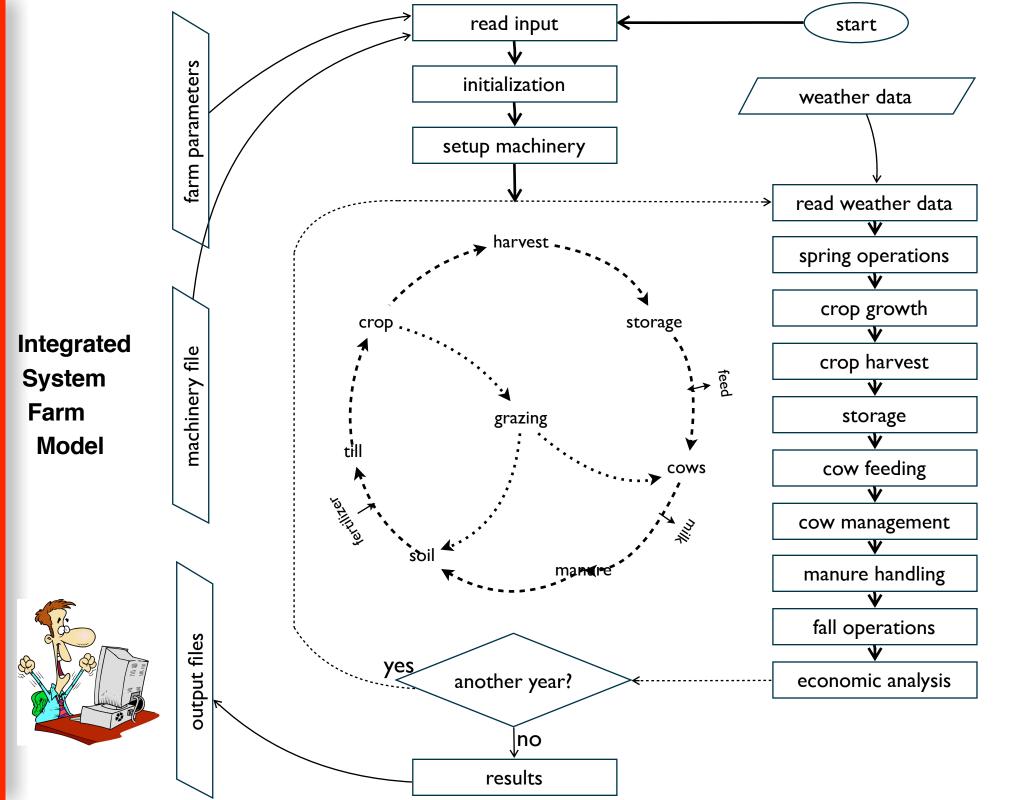
Scenarios

- Grazing to lactating with no decrease in milk production
- 2. Grazing offered to lactating cows with 5% decrease in milk production
- 3. Incorporation of manure the same day of application and addition of a 12-month covered tank
- 4. Combination of scenarios 1 and 3
- 5. Combination of scenarios 2 and 3

Strategies for ORGANIC and GRAZING


Scenarios

- 6. Decrease forage to grain ratio with a 5% increase in milk production
- Decrease forage to grain ratio with a 10% increase in milk production
- 8. Incorporation of manure the same day of application and addition of a 12-month covered tank
- 9. Combination of scenarios 6 and 8
- 10.Combination of scenarios 7 and 8


Integrated Farm System Model (IFSM)

Integrates major biophysical processes in a dairy farm **1.Livestock** 2.Crops 3.Grazing 4.Weather 5.Machinery 6.Feed storage 7.Soils 8. Manure and nutrient 9. Economics **10.Tillage and planting**

GHG sink an sources at the farm level

- Housing
- Manure storage
- Feed production
- Grazing
- Fuel combustion
- Secondary sources

Baseline outcomes: Farm system differences

	CON	GRA	ORG
Milk production	9,735	7,256	6,159
Feed costs (\$)	182,124	134,133	149,744
Total income (\$)	357,151	288,603	350,185
Net return to management (\$)	23,895	14,439	59,120
Net return to management (\$/1,000 kg milk)	28.9	23.4	112.9
Net emission (kg CO ₂ eq/kg milk)	0.58	0.66	0.87
Net emission (kg CO_2 eq/yr)	476,623	405,565	454,780

Management strategies: CONVENTIONAL

	0	1	2	3	4	5
Milk production	9,735	0	-406	0	0	-406
Feed costs (\$)	182,124	-994	-1,795	116	-1,425	-1,349
Total income (\$)	357,151	3,668	-7,979	177	3,865	-7,780
Net return to management (\$)	23,895	7,005	-802	-3,536	3,180	-4,641
Net return to management (\$/1,000 kg milk)	28.9	8.4	0.2	- 4.3	3.8	-4.6
Net emission (kg CO ₂ eq/kg milk)	0.58	-0.16	-0.15	-0.08	-0.18	-0.18
Net emission (kg CO_2 eq/yr)	476,623	-126,959	136,289	-60,550	-148,829	-157,555

Management strategies: GRAZING

		MILK	MILK	R.	R.	MILK R.
	0	6	7	8	9	10
Milk production	7,256	362	725	0	362	725
Feed costs (\$)	134,133	34,797	36,670	242	34,994	36,871
Total income (\$)	288,603	21,560	32,627	95	21,614	32,681
Net return to management (\$)	14,439	-12,846	-4,683	-3,565	-16,407	-8,247
Net return to management (\$/1,000 kg milk)	23.4	-20.9	-9.0	-5.8	-26.4	-14.3
Net emission (kg CO ₂ eq/kg milk)	0.66	-0.17	-0.18	0.04	-0.13	-0.15
Net emission (kg CO_2 eq/yr)	405,565	-86,729	-81,796	24,506	-65,447	-60,282

Management strategies: ORGANIC

			MILK	R.	R.	MILK B.
	0	6	7	8	9	10
Milk production	6,159	308	615	0	308	615
Feed costs (\$)	149,744	49,788	52,369	403	49,861	52,465
Total income (\$)	350,185	39,429	53,253	130	39,526	53,322
Net return to management (\$)	59,120	-9,766	605	-4,855	-14,793	-4,403
Net return to management (\$/1,000 kg milk)	112.9	-23.1	-9.2	-9.2	-32.3	-17.9
Net emission (kg CO ₂ eq/kg milk)	0.87	-0.23	-0.25	0.06	-0.18	-0.20
Net emission (kg CO_2 eq/yr)	454,780	-102,405	-97,632	30,728	-76,632	-71,615

Conclusions

Sources of GHG emissions

- Opportunities exist to reduce GHG emissions and still maintain or even increase profitability, regardless of the dairy farm system
- Manure management strategies decreased GHG emissions with a negative impact in profitability
- Implementation of mitigation strategies should be applied according to farm system characteristics
- Other important dairy management strategies (e.g., reproduction, culling) cannot be studied directly within the IFSM framework

Acknowledgment

Project Supported by USDA National Institute of Food and Agriculture Organic Agriculture Research and Extension Initiative Grant No. 2010-51300-20534

United States Department of Agriculture National Institute of Food and Agriculture

Muito obrigado

Melhorar a relação custo-eficiência e rentabilidade

Este site foi concebido para apoiar a pecuária leiteira a tomada de decisões com foco no modelo baseado em pesquisas científicas. O objetivo final é fornecer ferramentas de apoio à decisão informatizado user-friendly para ajudar os produtores de leite melhorarem o seu desempenho econômico, juntamente com a gestão ambiental.

UW-Dairy Management Decision Support TOOLS

Universidade de Wisconsin

University of Wisconsin - Madison UW - Extensão Cooperativa UW - Dairy Science Gado de Leite Reprodução Gado de Leite Nutrição Qualidade do leite UW Dairy Nutrient Entender os mercados lácteos UW Centro de Rentabilidade Dairy

Últimos Projetos

Melhoria da sustentabilidade Dairy Farm Genomic Selection e gerenciamento de rebanho Reprodução Dairy Ferramentas de Apoio à Decisão

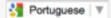
Estratégias de Suplementação Pasto Melhorar Dairy Cow Fertilidade

Contato

Professor Associado Extensão Especialista em Gestão Dairy Ciências 279 animais 1675 Observatório Dr. Madison, WI 53706 (608) 265-8506 vcabrera@wisc.edu mais =

Victor E.Cabrera, Ph.D.

Ligação úteis


Programa Dinheiro Repro

Tweets	🈏 Siga
Victor E. Cabrera vecabrera simbras-as.com.br/palestras fb.me/22KUIqazW	19 de setembro
Victor E. Cabrera e vecabrera fb.me/6IMXCMGIO	10 de setembro
Victor E. Cabrera © vecabrera	26 de agosto
Tweet paravecabrera	
🖪 Share 🛛 🕈 🔛 🏭	

© 2011 Wisconsin Milk Marketing Board, Inc

Management-UW Dairy Extensão 2014

DairyMGT.info

00000