





### Improving Reproductive and Economic Performance using Serum and Milk Based Pregnancy Tests V.E. Cabrera University of Wisconsin-Madison

CRI Annual Meeting, 26 March 2013, Minneapolis

### **Chemical pregnancy tests**

Commercial available assays



Blood (serum or plasma) ELISA for PSP-B



Blood (serum or plasma) ELISA for PAG



Milk ELISA for PAG

Blood (serum or plasma) ELISA for PAG

ELISA = Enzyme-Linked Immunosorbent Assay

**PSP-B = Pregnancy Specific Protein B** (*Sasser et al., 1998*)

**PAG = Pregnancy Associated Glycoproteins** (*Green et al., 2005*)

## **Chemical pregnancy tests**

How they work?



**Courtesy of P. M. Fricke** 

**BNGC = Binucleate giant cell** 

# **Pregnancy tests**

A comparison

|                 | Earliest<br>post<br>breeding d | Gender       | Age/Size     | Heifers      | Less<br>handling | Abortion<br>risks | More<br>available<br>tests |
|-----------------|--------------------------------|--------------|--------------|--------------|------------------|-------------------|----------------------------|
| Palpation       | 32                             |              | $\checkmark$ | $\checkmark$ |                  |                   |                            |
| Ultrasound      | 28                             | $\checkmark$ | $\checkmark$ | $\checkmark$ |                  | $\checkmark$      |                            |
| bioPRYN         | 28                             |              |              | $\checkmark$ |                  | $\checkmark$      | $\checkmark$               |
| DG29            | 29                             |              |              | $\checkmark$ |                  | $\checkmark$      | $\checkmark$               |
| IDDEXX<br>blood | 28                             |              |              | $\checkmark$ |                  | $\checkmark$      | $\checkmark$               |
| IDDEXX<br>milk  | 35                             |              |              |              | $\checkmark$     | $\checkmark$      | $\checkmark$               |

Chemical tests to be performed at least 60 d after calving

## **Pregnancy diagnosis**

The timeline



Earliest post-calving

#### **Earliest post-calving**

- Carryover concentrations
  - PSP-B
  - PAG



Earliest post-abortion

#### **Earliest post-abortion**

- Carryover concentrations
  - PAG
  - PSP-B

#### **Decline below detectable thresholds**

• PAG and PSP-B concentrations were similar to non-pregnant cows at 9.5 d after treatment



PGF=25 mg of PGF2a (36 h stop heart beat) INF=Intrauterine infusion of hypertonic saline (0.3 h stop heart beat)

Accuracy

#### Sensitivity: True pregnant

 Actual pregnant cow with positive ELISA

|                  | Milk       |              |            |            |
|------------------|------------|--------------|------------|------------|
| 27 d PAG         | 28 d PSP-B | 30 d PSP-B   | 35 d PSP-B | > 60 d PAG |
| 95.4%            | 93.9%      | 96.0%        | 97.2%      | 99.2       |
| Silva et al 2007 | Dom        | LeBlanc 2013 |            |            |

#### Sensitivity: False non-pregnant

Induced abortion!

Accuracy

#### Specificity: True non-pregnant

• Actual non-pregnant cow with negative ELISA

|          | Milk       |            |          |            |
|----------|------------|------------|----------|------------|
| 27 d PAG | 28 d PSP-B | 30 d PSP-B | 35 PSP-B | > 60 d PAG |
|          |            |            |          |            |
| 94.2%    | 95.5%      | 93.9%      | 93.6%    | 95.5%      |

#### Specificity: False pregnant

Lost time to re-enrollment

Accuracy

#### **Questionable diagnosis**

Not conclusive answer

| Blo        | Milk          |  |
|------------|---------------|--|
| Lower      | > 60 d PAG    |  |
| 3.3%       | 3.3% 8.5%     |  |
| Giordano e | LeBlanc, 2013 |  |

#### **Questionable diagnosis**

- Re-check required
- Lost time to re-enrollment

Early embryonic loss



#### **Pregnancy loss**

- Similar to lower specificity
- Appear as false pregnant
- Lost time to re-enrollment

Lab test time cycle

#### Blood PAG tests (Silva et al., 2007)



Blood PAG tests (Giordano et al., 2013) • Assumed 4 effective

days from sample collection to next reproductive action

Courtesy of P. M. Fricke

#### Milk PAG AgSource Easy Preg-Check

Results within 2 d from sample arrival at laboratory



J. Dairy Sci. 96:949–961 http://dx.doi.org/10.3168/jds.2012-5704 © American Dairy Science Association<sup>®</sup>, 2013.

# Economics of resynchronization strategies including chemical tests to identify nonpregnant cows

#### J. O. Giordano, P. M. Fricke, and V. E. Cabrera<sup>1</sup>

Department of Dairy Science, University of Wisconsin, Madison 53706



# UW-DairyRepro\$Plus

### A decision support tool





Effect of shorter interbreeding intervals (IBI)



Economic impact of using chemical tests for early pregnancy diagnosis





### Reproductive performance



Economic performance, value of chemical test (CT)

|                     |         |       | \$ per 1% or \$0.1 |              |  |
|---------------------|---------|-------|--------------------|--------------|--|
|                     | Base    | Range | CT31 vs RP39       | CT24 vs TU32 |  |
| % Sensitivity       | 98/97   | 94-99 | +5.3               | +4.5         |  |
| % Specificity       | 98/97   | 94-99 | +3.1               | +2.5         |  |
| % Pregnancy loss    | 6/6.6   | 0-10  | -3.1               | -2.5         |  |
| % Questionable      | 3.3/8.5 | 0-10  | -0.4               | -0.3         |  |
| % Estrous detection | 50      | 30-80 | 0.097              | -0.220       |  |
| \$ CT cost          | 2.4     | 0.5-5 | -0.0175            | -0.0192      |  |

Economic performance, breakeven of chemical test (CT)

|                  | Break even   |              |  |
|------------------|--------------|--------------|--|
|                  | CT31 vs RP39 | CT24 vs TU32 |  |
| % Sensitivity    | 96.4         | 94.9         |  |
| % Specificity    | 95.1         | 93.2         |  |
| % Pregnancy loss | 8.9          | 10.5         |  |

# Economic value of a dairy cow

A decision support tool



### DairyMGT.info

# Value of improved reproductive performance

Law of diminishing returns



#### How much is the gain

•Between \$32 and \$11 per cow per year

Net profit when increasing preg. rate from 15 to 20% •\$103 per cow per year

### Value of a new pregnancy

Important to have cows pregnant



### Cost of a pregnancy loss

Detect aborted cows as early as possible



### Cost of a day open (\$/d)

Critical to have pregnant cows and detect non-pregnant cows as early as possible

|     | Lactation |      |      |      |  |  |
|-----|-----------|------|------|------|--|--|
| MIM | 1         | 2    | 3    | 4    |  |  |
| 1   | -0.58     | 2.41 | 2.01 | 1.75 |  |  |
| 2   | 1.30      | 4.03 | 4.17 | 3.96 |  |  |
| 3   | 2.88      | 5.16 | 5.55 | 5.41 |  |  |
| 4   | 3.07      | 4.75 | 5.12 | 5.00 |  |  |
| 5   | 3.08      | 4.27 | 4.53 | 4.40 |  |  |
| 6   | 3.02      | 3.77 | 3.92 | 3.80 |  |  |
| 7   | 2.94      | 3.26 | 3.28 | 3.17 |  |  |
| 8   | 2.92      | 2.73 | 2.60 | 2.49 |  |  |
| 9   | 2.98      | 2.19 | 1.86 | 1.74 |  |  |
| 10  | 3.14      | 1.63 | 1.05 | 0.91 |  |  |

*Cabrera, 2012* 

### Acknowledgement

**Project support** 

This project is supported by Agriculture and Food Research Initiative Competitive Grant No. 2010-85122-20612 from the USDA National Institute of Food and Agriculture



United States Department of Agriculture National Institute of Food and Agriculture

