

Dairy Management

Dairy Management site is designed to support dairy farming decision-making dusing in del-based scientific research. The ultimate goal is to provide user-friendly computerized decision support systems to help dairy farms, prove their economic performance. Dr. Victor Cabrera focuses on model-based decision support in dairy cattle and in dairy farm product on systems. Dr. Cabrera's primary interest is to improve cost-efficiency and profitability along with environmental stewardship in dairy farms by sin simula in techniques, artificial intelligence, and expert systems. Dr. Cabrera's research and Extension programs involve interdisciplinary and part in ton, approaches towards the creation of user-friendly decision support systems. As an Extension Specialist, Dr. Cabrera works in close relating to the county-based extension faculty, dairy producers, consultants, and related industry.

Latest Projects

- Dairy Cow Fertility
- Strategies of Pasture Supplemention
- → Success for Small Dairy Farmers
- → LGM-Dairy
- Dairy Economic Decision Support System

9 UW

- University of Wisconsin Madison
- → UW Cooperative Extension
- <u>UW Dairy Science</u>
- Understanding Dairy Markets
- → <u>UW Dairy Nutrient</u>
- → <u>UW Center for Dairy Profitability</u>

Dairy News

→ <u>UW-Extension Dairy News</u>

Important Announcement

New Graduate Student Position

Contact

Assistant Professor Extension Specialist Dairy Management 279 Animal Sciences 1675 Observatory Dr. Madison, WI 53706 (608) 265-8506 vcabrera@wisc.edu Professional Page

Victor E. Cabrera, Ph.D.

Admin Portal

Click Above to reach the Administrator Portal

Victor E. Cabrera, PhD
Assist. Professor
Extension Dairy Specialist

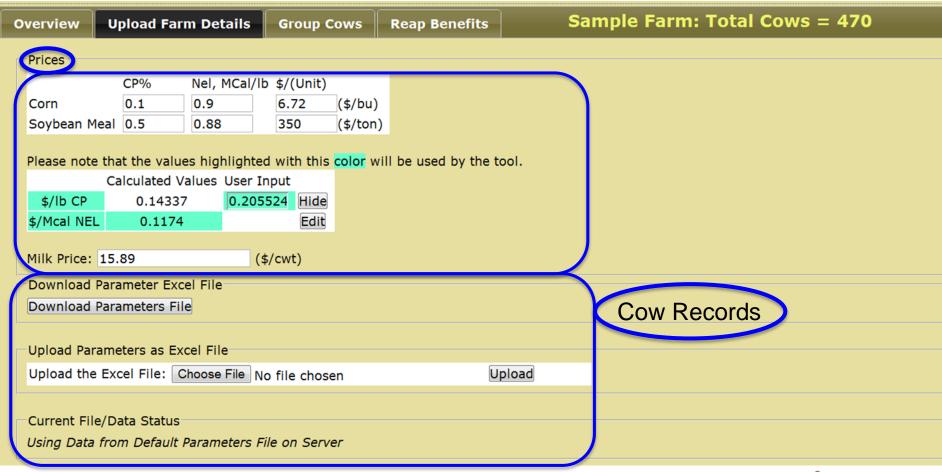
Grouping Cows More Profit

Nutrient use efficiency

- Feed costs
- K Nutrient excretion

W Overfed animals

Do You Want to Analyze Your Farm?


Grouping Strategies for Feeding Lactating Dairy Cattle

Overview Upload Farm Details Group Cows Reap Benefits Sample Farm: Total Cows = 470

This tool evaluates feeding grouping strategies in lactating cows. It uses different criteria to group, finds the cows to conform a group (optimizes), suggests a group diet ration based on Net Energy (NEL, MCal/lb) and Crude Protein (CP, %), compute the expected Income Over Feed Cost (IOFC), and the additional economic benefit of feed grouping after management of additional groups and an expected milk depression on lactating cows regrouped.

In order to use this tool a herd test file is needed. This should contain information regarding Cow ID, Lactation, Days in Milk (DIM), Milk Produced, and Milk Fat Content. Optionally, for more accurate calculations, Body Weight (BW) could be added (if BW is not provided, the tool calculates BW based on lactation and DIM after a user-entered average BW for primiparous and multiparous cows). The tab with name upload farm details helps the user upload an excel file with those parameters. It is suggested to first download the parameters file to a local computer and then use this as a template to enter farm specific data. Once the data are entered, the file could be back uploaded. The tool will indicate which file is being used. The number of lactating cows in the file will be automatically counted and displayed. Also, in this tab, the user defines indirectly the price of feed energy (\$/MCal) and feed protein (\$/ Ib CP), which are based on nutritive content and prices of refereed feeds (Corn and Soybean meal). The user can over-write these values if desired.

Once the data have been entered, the user could move to the tab with name 'Group Cows'. This tab is self-explanatory and follows a decision tree structure to help the user analyze grouping strategies. After following the questions in the decision tree, the user could hit the 'Analyze' button and get the results in the 'Reap Benefits' tab. This last tab of the tool ('Reap Benefits') displays the economic benefit of different group strategies compared to the farm defined current strategy.

Dairy 🔊 Management

Your Farm Cow Records

COW			Milk,		Body Weight, Ib
ID	Lactation	Days in Milk	lb	Fat, %	(optional)
6234	1	84	62	4.2	
132	7	118	73	4.6	
6196	1	198	85	4.3	
5516	4	199	114	3.1	
5561	4	280	108	3.1	
5961	2	173	91	3.5	
6149	1	253	88	2.9	
5667	4	138	92	3.7	
5960	3	159	110	3	
5817	2	244	115	4.1	
6191	1	190	90	4.4	
				and the second s	

Your Farm Grouping Decisions

Grouping Strategies for Feeding Lactating Dairy Cattle

Currently No Grouping

BACK

How many groups can you handle and feed different diets to?

⊚Two

Three

Four

Please enter the size of each group that you can handle.

Group	Group1	Group2	Group3
Size	120	100	151

Please enter the CP and NEL values currently being used:

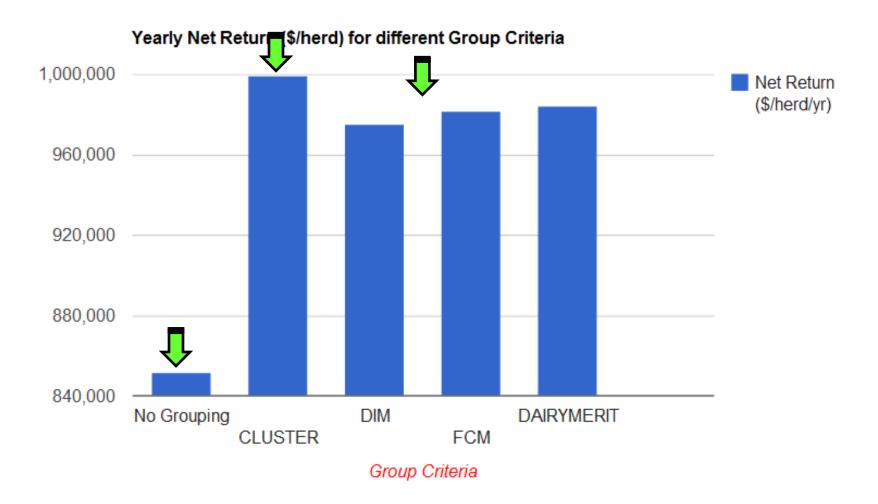
NE (Mcal NEL/lb)	CP(%)
0.82	18

Additional cost (labor, management, and machinery) of feeding and grouping lactating cows into 3 groups instead of 1 (\$/herd/month)

Estimate milk depression caused due to re-location of lactating cows:

Loss of milk production (lb/d) 5

Number of days the loss continues (d) 4


Would you save money because of using less feed addtives with more groups? If yes, how much would you save 100 herd/month

Proce analyze to know the benefits of grouping. Analyze

No Grouping vs. 3 Groups!

Currently 2 Groups

What criteria do you use to group lactating cows?

CLUSTER

MERIT

ODIM

○FCM

NEXT

What are the size and nutrients of your current groups?

Groups	Size	NE (Mcal NEL/lb)	CP (%)
Total	371		
Group1	180	0.82	18
Group2	191	0.77	17

How many groups do you have for

Three

Four

Additional cost (labor, management, and machinery) of grouping lactating cows and feeding(\$/herd/month): 500

Estimate milk depression caused due to re-location of lactating cows:

How many groups can you handlLoss of milk production (lb/d) 5

⊚Two

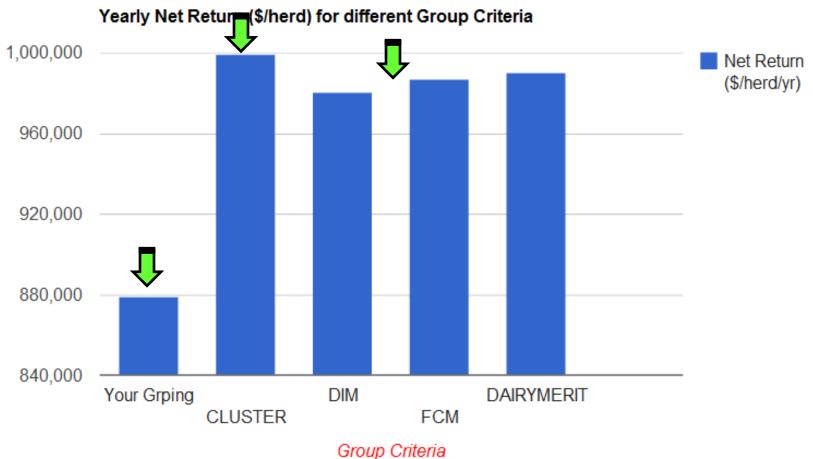
Three

Four

NEXT

Number of days the loss continues (d) 4

Would you save money because of using less feed addtives with more groups? If yes, how much would you save 0 \$/herd/month


Please enter the size of each gro

Group	Size
Group1	100
Group2	100
Group3	171

Press analyze to know how you can gain more by grouping better.

Analyze

2 Groups vs. 3 Groups!

Details of Your Optimized Grouping

Group Criteria	Group Number	Number Cows	NEL	СР	IOFC	Cost of Management	Cost Milk	Savings on	Total	
			(Mcal/lb)	(%)			-(\$/cow/d		<u>(</u> \$/I	nerd/yr)
YOUR GROUPING (Current Diets)	1	180	0.82	18.00	5.33					
	2	191	0.77	17.00	7.59					
	Mean		0.79	17.49	6.49	-0.00	-0.00	0.00	6.49	878,902

7.68

4.73

7.38

8.18 7.52

5.56

7.30

9.60

7.46

4.89

7.34

8.82

7.20

5.04

-0.04

-0.04

-0.04

-0.04

-0.01

-0.01

-0.01

-0.01

0.00

0.00

0.00

0.00

7.38

7.24

7.29

7.31

999,454

980,216

986,749

989,987

16.18 9.53

15.10

13.61

14.99

15.92

15.33

14.58

15.40

16.13

15.25

13.90

15.12

15.95

14.86

13.70

15.05 7.37

0.71

0.68

0.63

0.70

0.68

0.66

0.69

0.71

0.68

0.64

0.68

0.70

0.67

0.64

0.68

LUSTER hr	

DIM

FCM

DAIRYMERIT

1

2

Mean

1

2

3

Mean

1

3

Mean

1

2

Mean

100 171

100

171

100

100

100

171

100

171

100

100

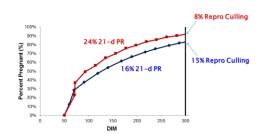
Your Farm Data

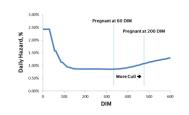
1 (n=100)	2 (n=171)	3 (n=100)
16.18132	15.10323	13.60792
0.712018	0.379536	0.636022
5720	5988	6079
6160	5776	5914
5753	3436	5969
3406	5841	5754
5693	5896	5412
5117	6190	6125
5454	5489	95
5459	6110	5733
5926	6165	5927
	16.18132 0.712018 5720 6160 5753 3406 5693 5117 5454 5459	16.1813215.103230.7120180.3795365720598861605776575334363406584156935896511761905454548954596110

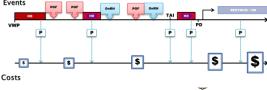
Victor E. Cabrera, PhD
Assist. Professor
Extension Dairy Specialist

Better Repro -> More Profit

7 Milk

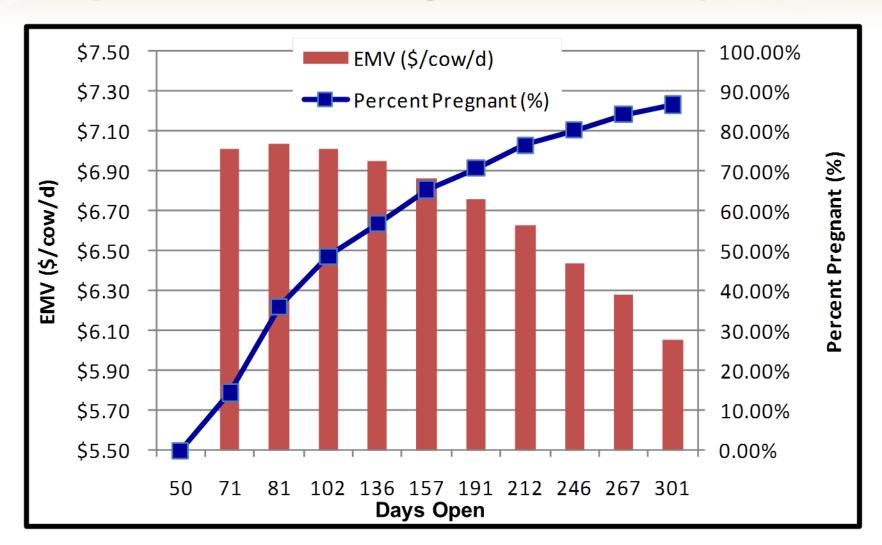



7 Calves



- Repro culling
- Involuntary culling

Kepro costs



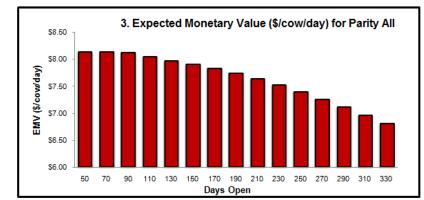
Expected Monetary Value & Repro

Do You Want to Analyze Your Farm?

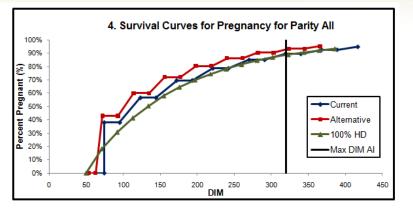
UW-Dairy Repro\$

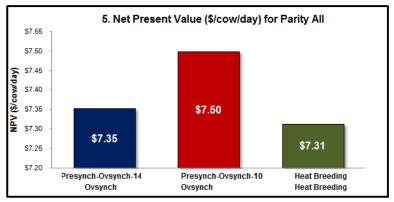
Victor E. Cabrera & Julio O. Giordano

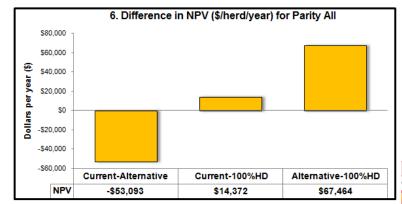
Department of Dairy Science



1. Productive and Economic Parameters Summary


Lacating Cows in Parity All	(#)	1000
Rolling Herd Average (RHA)	(lb/cow/y)	28000
Milk Price	(\$/cwt)	14.50
Average Value New Born	(\$)	90
Heifer Replacement Value	(\$)	1,000
Salvage Value	(\$)	700


2. Reproductive Programs Summary


	Current	Alternative	Baseline
1 st Service Postpartum	Presynch-Ovsynch-14	Presynch-Ovsynch-10	Heat Breeding
2 nd and Following Services	Ovsynch	Ovsynch	Heat Breeding
Voluntary Waiting Period	53d	53d	50d
Maximum DIM for Breeding		320d	
DIM 1st TAI	74d	72d	
Interbreeding Interval	49d	42d	21d
Heat Bred Before 1st TAI	0%	0%	55%
CR Heat Bred Before 1st TAI	0%	0%	33%
Heat Bred After 1st TAI	0%	0%	55%
CR Heat Bred After 1st TAI	0%	0%	28%
CR 1 st Service TAI	38%	43%	
CR 2 nd + Services TAI	30%	30%	
Cost 1st Service Breeding	\$34.00	\$33.89	
Cost Resynch Breedings	\$27.33	\$29.33	
Cost Heat Breedings	\$16.61	\$18.16	\$17.00
Pregnancy Diagnosis Method	Palpation	Ultrasound	Palpation
Pregnancy Diagnosis Cost	\$6.56	\$8.16	\$7.00

1. Productive Parameters			
Lactating Cows	(#)	90	60
Rolling Herd Average (RHA)	(lb/cow/y)	29000	
Involuntary Culling Rate	(%/y)	14.3	%
Mortality Rate	(%/y)	8.00	%
Stillbirth Rate	(%)	9.4%	6

2. Lactatio	n Curves	Lact. 1	Lact. 2	Lact. > 2			
Cow N	lumber	363	244	353			
Body Weig	ht (lb/cow)	1,350	1,400	1,450			
Test	DIM 🗹	Define	Define Lactation Curves Below				
1	15	77	105	107			
2	45	91	120	126			
3	75	94	120	128			
4	105	94	116	125			
5	135	93	112	120			
6	165	91	107	112			
7	195	89	98	104			
8	225	87	91	94			
9	255	83	82	86			
10	285	79	75	81			
11	315	76	68	71			
12	345	72	61	61			
13	375	70	57	60			
14	405	60	53	55			
17	495	56	45	40			
18	525	57	45	55			
19	555	54	29	27			

3. Economic Parameters Check if total breeding costs are known						
Milk Price (S	\$/cwt)	16.00				
Cost Feed Lactating (DM) ((\$/lb)	0.10				
Dry Period Fixed Cost	(\$/d)	2.20				
Female Calf Value (9	(calf)	300				
Male Calf value (9	(calf)	75				
Heifer Replacement Value (\$/	heifer)	1,600				
Salvage Value (\$	S/cow)	780				
Labor Cost for Injection ((\$/hr)	15.00				
Heat Detection Cost ((\$/hr)	15.00				
Artificial Insemination Cost (\$	S/cow)	17.00				
Interest Rate (%/y)	6.5%				

4. Pregnancy Diagnosis Cost		Current	Alternative	100% HD
Palpation	(\$/hr)	90		90
Ultrasound	(\$/hr)		90	
Blood Test	(\$/cow)			

		Resy	nch	-39				Res	yncl	h-32	
5.a. Reproductive Program				Start					1	Start	
0.00000-10000-0000	Current	* Anna Anna		day			Altern	ative /		day	
1 st Service Postpartum	Double-Ovsy	nch	▼	Sat	lacksquare	Doub	e-Ovsy	nch //	•	Sat	lacksquare
2 nd and Subsequent Services	Ovsynch	•		Tue	lacksquare	Ovsy	nch	1	lacksquare	Tue	
Resynch before preg check Q	NO					YES		/			
5.b. Repr	oductive P	rogram	Par	amet	ers						
			Curr	ent	Alterr	native	100%	HD			
Voluntary Waiting P		(d)		35		5	50				
Estrus Cycle Duration		(d)	Щ			2					
Maximum DIM for B	reeding	1000000	_		33	30					
DIM to 1st TAI		(d)		35		5					
Interbreeding Interva	l	(d)		19	4	2)					
Heat Bred Before 1s	^t TAI	(%)	5	5%	55	%	55%	6			
CR Heat Bred Befor	e 1 st TAI	(%)	3:	3%	33	3%	339	6			
Heat Bred After 1st 7	ΓΑΙ	(%)	5	5%	55	%	55%	6			
CR Heat Bred After	1st TAI	(%)	3	0%	30)%	309	6			
CR 1 st Service TAI		(%)	4	7%	47	7%					
CR 2 nd + Services TA	AI.	(%)	(3)	2%	(30	1%					
Calving Interval		(mo)			14	.1					
Dry Period		(d)			6	2					

SIN

5.c. Hormones Cost									
Hormone	Brand		Vial Cost	Vial					
GnRH	Fertagyl		19	10					
PGF	Lutalyse	•	40	20					
CIDR		•							
hCG	Chorulon	▼	17.4	5					

Resynch-39
5.d. Injections and Pregnancy Diagnosis Labor Cost: Current Program

	1111	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Inject.	Laborers		3		1		2	
	hr/d		3.5		1.5		1	
Co	ws Treated		165		45		20	
Preg.	# Cows		45		0		0	
Diag.	hr/d		2.75		0		0	

5.e. Injections and Pregnancy Diagnosis Labor Cost: <u>Alternative Program</u>

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Inject. Laborers		3		1		2	
hr/d		3.75		1.5		1	
Cows Treated		195		40		20	
Preg. # Cows		40		0		0	
Diag. hr/d		2.75		0		0	

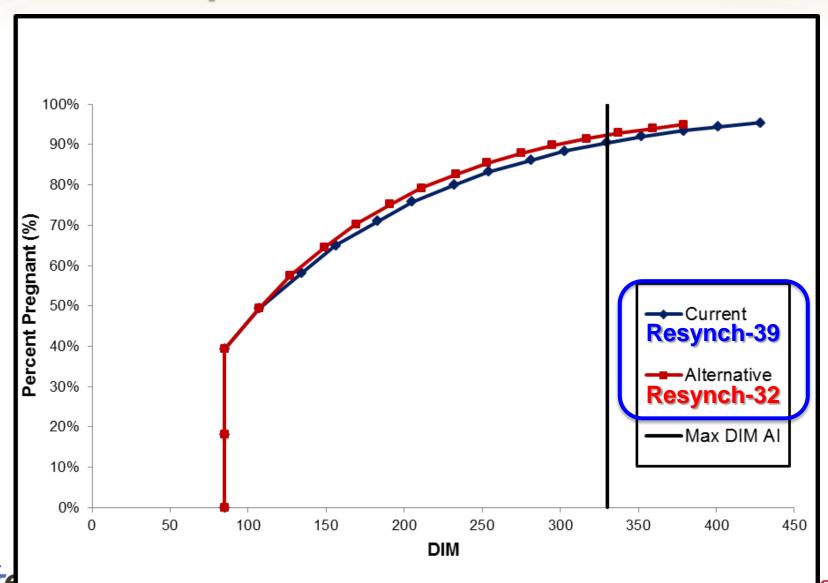
5.f. Heat Detection Labor Cost

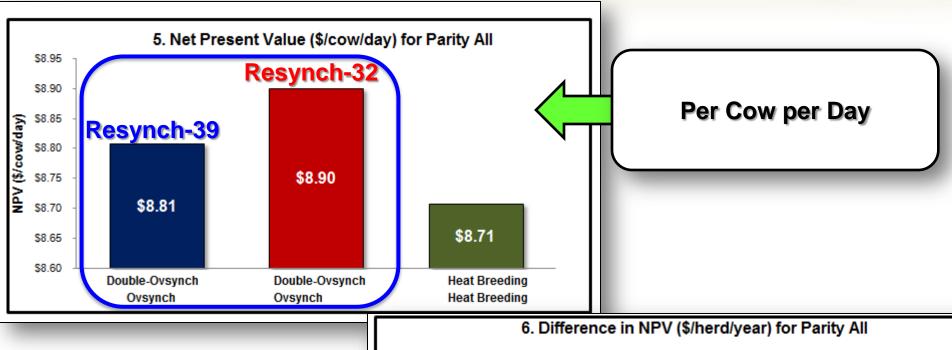
		Mon	Tue	VVed	Thu	Fri	Sat	Sun
Heat	Laborers	1	1	1	1	1	1	1
Detect.	hr/d	3	3	3	3	3	3	3
Preg.	# Cows	30	0	0	0	0	0	0
Diag.	hr/d	2	0	0	0	0	0	0

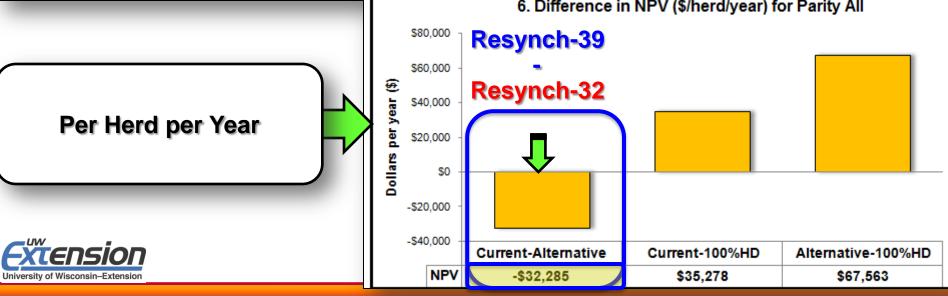
Your Repro Costs

2. Reproductive Programs Summary							
	Baseline						
1 st Service Postpartum	Double-Ovsynch	Double-Ovsynch	Heat Breeding				
2 nd and Following Services	Ovsynch	Ovsynch	Heat Breeding				
Cost 1st Service Breeding	\$40.46	\$40.95					
Cost Resynch Breedings	\$30.71	\$31.28					
Cost Heat Breedings	\$22.56	\$23.19	\$23.00				
Pregnancy Diagnosis Method	Palpation	Ultrasound	Palpation				
Pregnancy Diagnosis Cost	\$5.50	\$6.19	\$6.00				

Resynch-39 Resynch-32






Your Repro Performance

University of Wisconsin-Extension

Your Economic Performance

REPRO MONEY

REPRO M\$NEY

Repro Money is a **team based farmer directed program** to improve the reproductive performance of his herd.

Farm specific: Farms enroll and commit to form a reproductive team

™Who is in the team?: Farm owner, veterinarian, extension agent, Al technician and others

Results oriented: 4 meetings over 6 months.

Define clear goals

Create a focused reproductive action plan

Put it in place

Evaluate results at 4th meeting

For more information: http://fyi.uwex.edu/repromoney/

email us at: repromoney@ces.uwex.edu

Telephone: 608-265-9746

Or contact your local county agent

