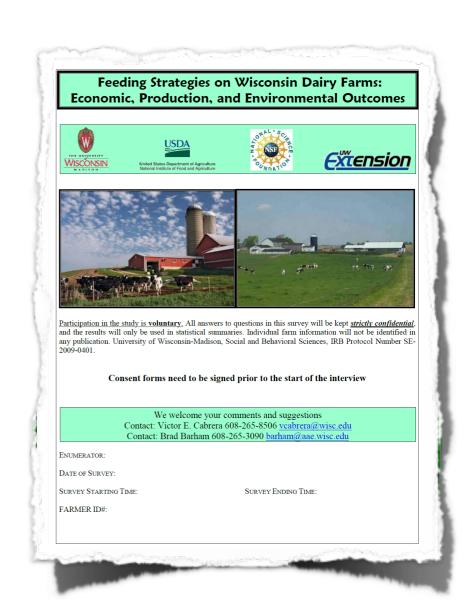


Strategies of Pasture Supplementation on Organic and Grazing Dairies

V.E. Cabrera, M. Dutreuil, C. Hardie, R. Gildersleeve, M. Wattiaux, D. Combs **University of Wisconsin**



The Survey

9 Sections

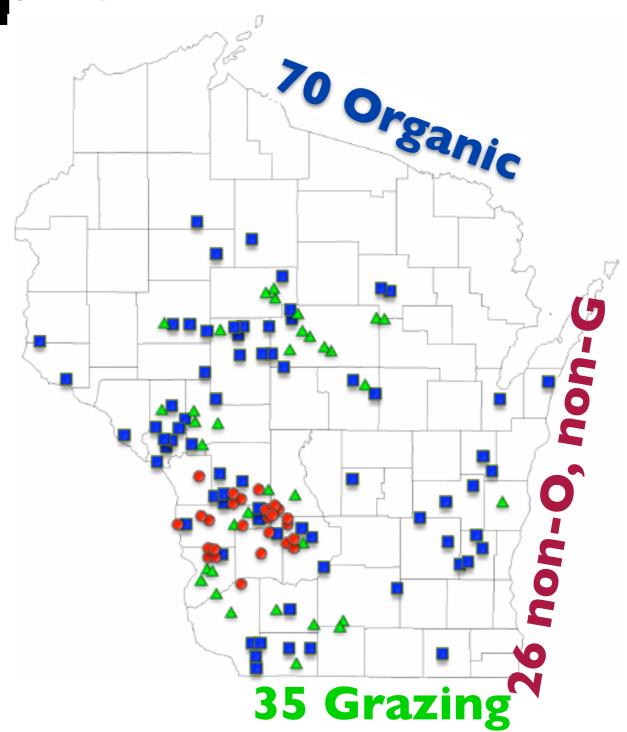
- Farm business structure and decision makers
- 2) People working on the farm
- 3) Dairy herd and management
- 4) Feeding management
- 5) Pasture management
- Land management and cropping operation
- 7) Manure and nutrient management
- 8) Economic information; and
- Assessment of farm management and satisfaction.

The Survey

Face-to-face interviews

- 5 hours on average
- Collected 2011 and 2012
- Monthly data for 2010
- Observations: I31 farms

PhD Student
 Marion Dutreuil


MS Student
 Claudia Hardie

Sample

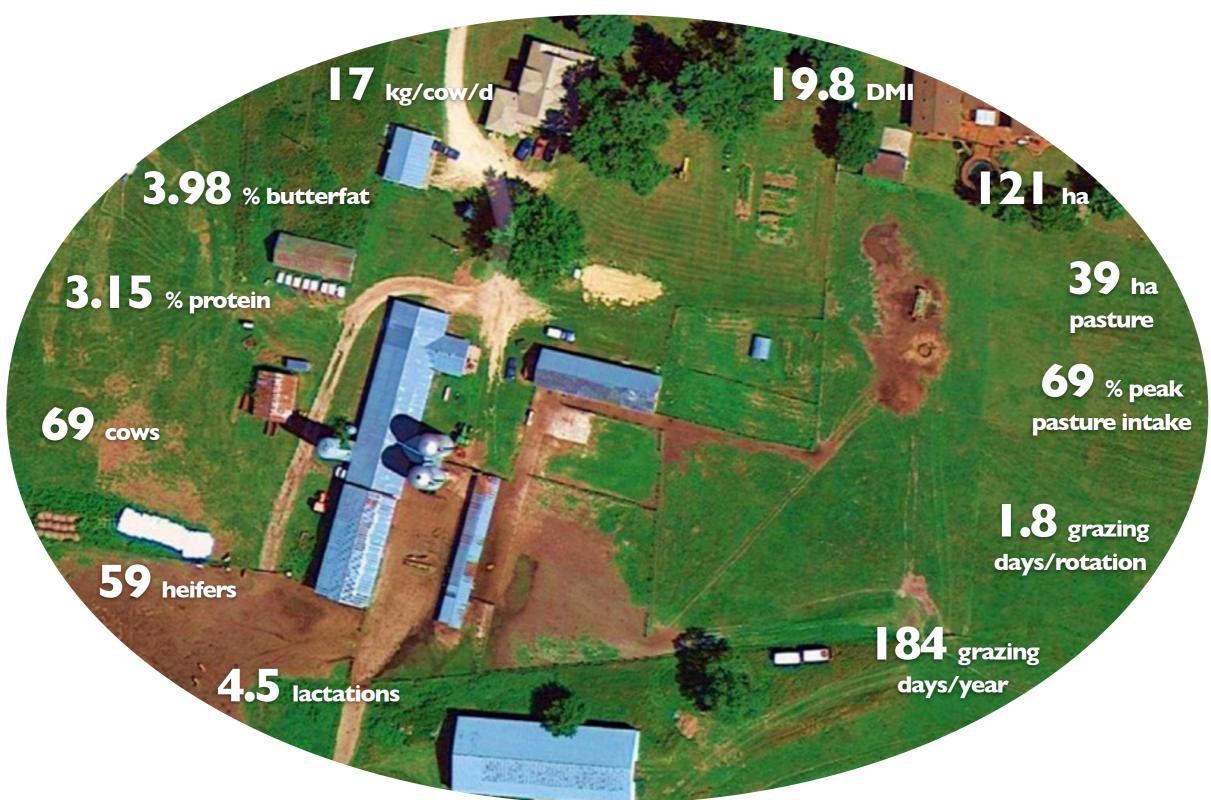
 Random sample from list of all dairy producers in Southwest

- 2. Purposeful sample of grazing dairy producers
- 3. All certified dairy cattle organic producers

WI Organic Farm (n=70)

	Minimum	Average	Maximum	SD
Years certified organic	0.7	6.7	20	4.7
Years utilizing grazing	0	14.7	90	13.4
Total land, ha	17.6	121	766	130
Total pasture, ha	6	39.4	144	31.2
Number of cows	12	69.2	650	85.8
Number of heifers	9	59.3	600	80.5
Milk production, kg/cow per year	2,360	6,272	10,286	1,805
Milk fat content, %	3.47	3.98	5.19	0.35
Milk protein content, %	2.82	3.15	3.67	0.18
Age of first calving, months	23	26.1	36	2.72
Calving interval, months	10	13	20.3	1.25
Number of lactations before culled	2	4.51	7	1.16
Dry matter intake (DMI), kg/cow/day	11.8	19.8	28.2	3.7
Peak pasture intake, % of DMI		69.3	100	26. I
Grazing rotation frequency, days	0.21	1.81	14	2.61
Length of grazing season, days	122	184	244	29

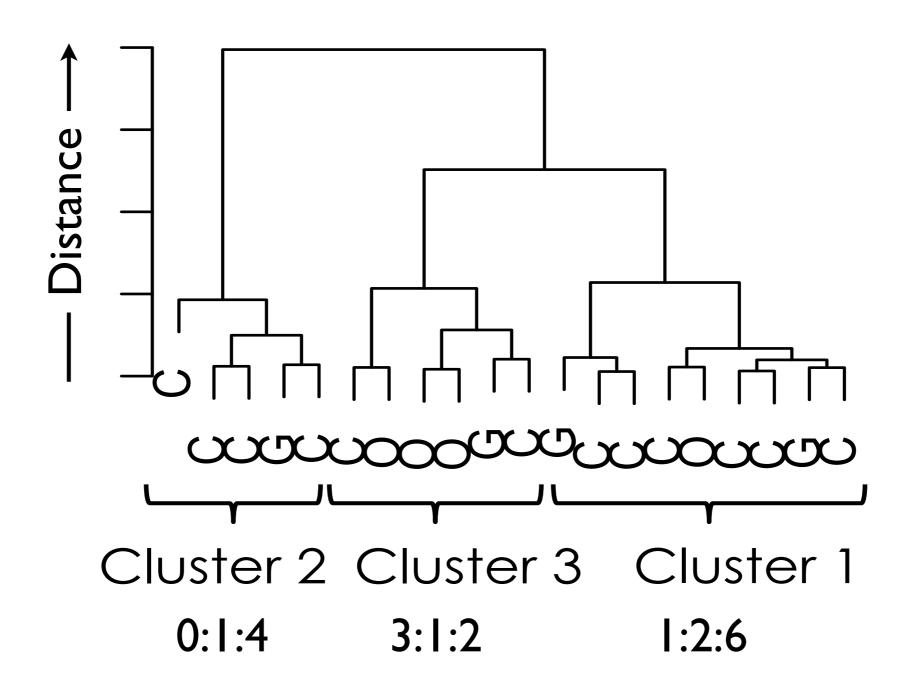
WI Organic Farm (n=70)


- Supplementation:
 - 81.8% Grain
 - 12.3% Protein
 - 35.4% Corn silage

Pasture:

- I. Clover (red, white)
- 2. Orchardgrass
- 3. Kentucky bluegrass
- 4. Quackgrass
- 5. Timothy
- 6. Alfalfa
- 7. Smooth bromegrass
- 8. Reed canarygrass

An organic WI dairy farm



Factors Affecting Profitability

- Profitability =
 Milk income Feed costs =
 Income over Feed Cost
- n = 20 (<u>preliminary</u>)
 4 organic (O)
 4 grazing (G)
 12 non organic, non grazing (C)
- Cluster analysis by complete linkage

Factors Affecting Profitability

Factors Affecting Profitability (n=20 preliminary)

	Cluster I	Cluster 2	Cluster 3
O:G:C	0:1:4	3:1:2	1:2:6
Total ha	114	94	53.2
Number of cows	72	71	48
Milk production, kg/cow/year	7,083	10,787	4,155
Fat content (%)	3.78	3.55	4.36
Protein content (%)	2.99	3.03	3.25
SCC (x1,000 cells/ml)	287	204	317
Milk price, \$/kg	0.37	0.35	0.48
Total DMI in winter, kg/cow/day	23.6	20.4	17.7
% hay in winter	32	0.9	54
% concentrates in winter	36	46	16.2
% vitamins and minerals in winter	0.9	0.7	2.4
IOFC in winter (\$/cow/day)	5.97	8.09	5.22

Factors Affecting Profitability (n=20 preliminary)

-Cluster 2-

Productive efficient, \$8.09 IOFC 0:1:4

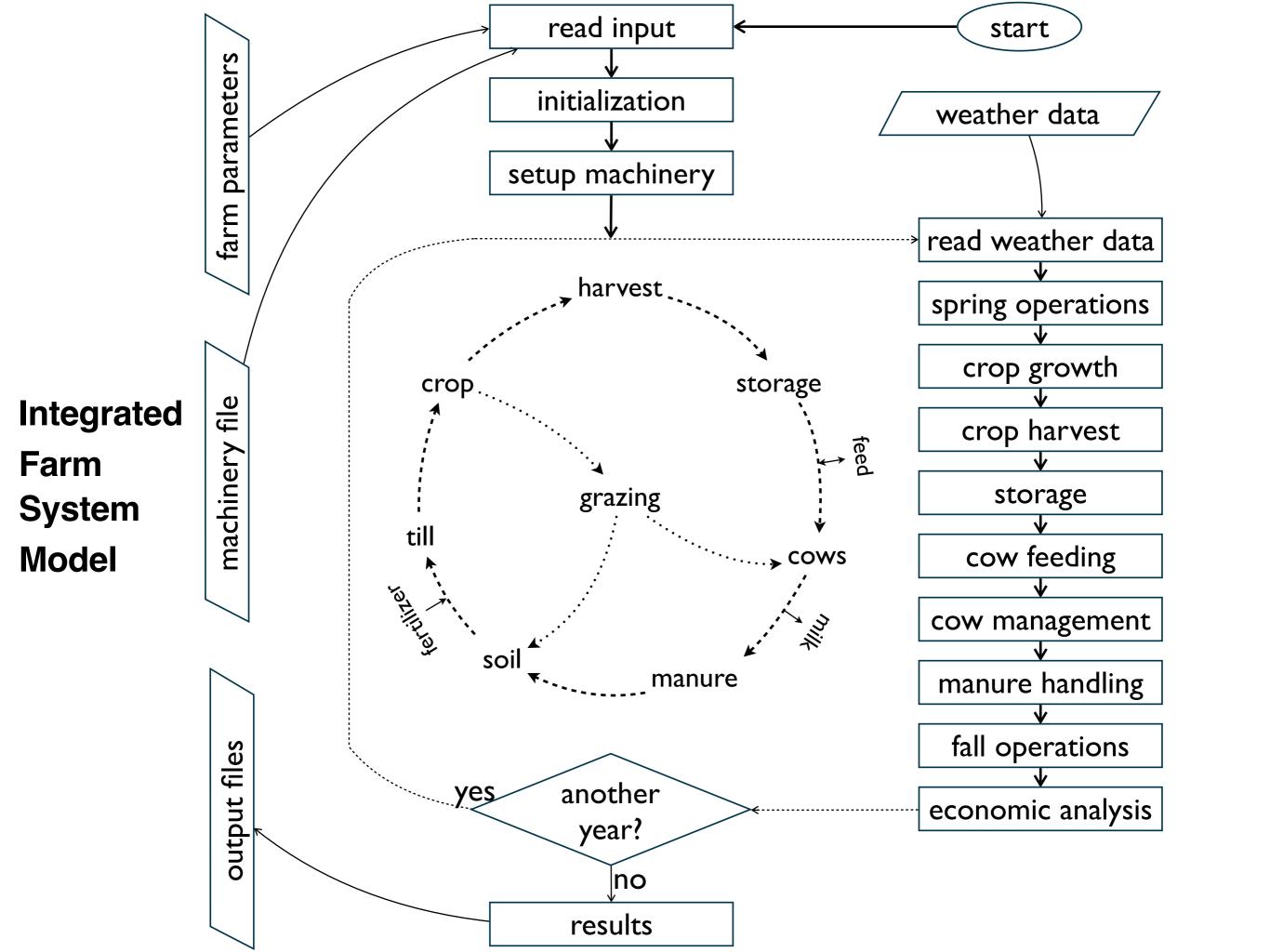
- Intermediate land and herd size
- Highest milk productivity
- Highest concentrate in diet
- Poorest milk composition
- Lowest milk price

- Largest land base
- Intermediate milk productivity, composition and price,
- highest DMI
- Intermediate levels of feed ingredients

Cluster 3——

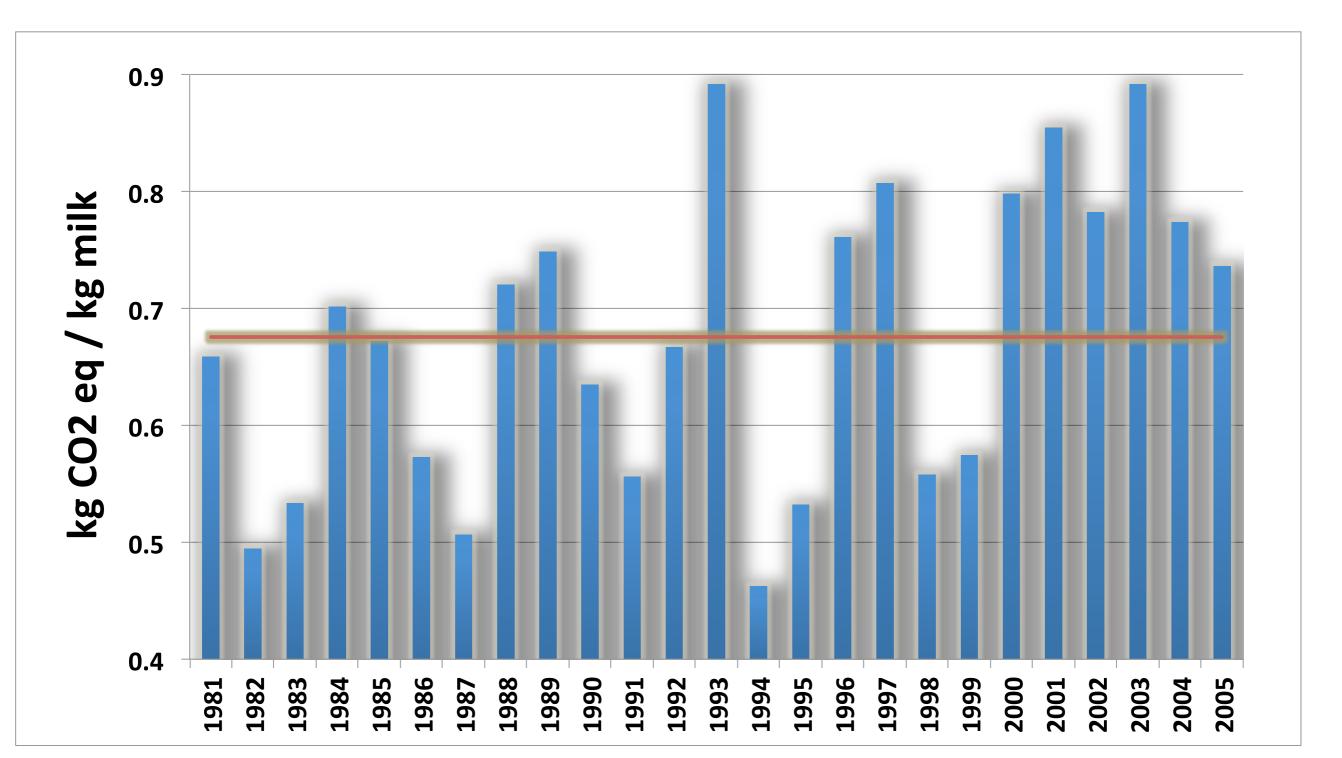
Low input, \$5.22 IOFC 1:2:6

- Smallest land and herd size
- Lowest milk productivity
- Lowest DMI
- Best milk composition
- Best milk price


Factors Affecting Profitability (n=20 preliminary)

- Farm system might not be a good indicator of farm profitability
- Scope and inference is restricted to the preliminary analysis
- Complete survey database are being analyzed

Predicted Greenhouse Gas Emissions (n=3 selected farms)


Farm system type	Non org		Organic		Grazing	
Density	Current	Double	Current	Double	Current	Double
Number of cows	75	150	80	160	80	160
Stocking, cow/ha	0.46	0.92	0.49	0.99	0.59	1.18
Milk, kg/cow/year	25,725	25,544	10,480	10,480	11,002	11,002
Forages, ha	162.3		132.3		135.2	
Alfalfa, ha	57.I		69.6		135.2	
Grass, ha	28.3		62.7		0	
Corn, ha	76.9		0		0	

Predicted Greenhouse Gas Emissions (n=3 selected farms)

Farm system type	Non organic or grazing		Organic		Grazing		
	Current	Double	Current	Double	Current	Double	
Stocking (cows/ha)	0.46	0.92	0.49	0.99	0.59	1.18	
PGHGE (kg CO2 eq /kg milk)	0.53	0.66	0.70	0.75	0.77	0.74	
	(% total PGHGE)						
Housing	46.6	42.8	39.0	37.I	30.7	33.0	
Manure	4.0	39.0	5.6	5.2	15.6	9.3	
Feed	19.4	37. I	6.3	8.4	7.8	7.3	
Grazing	4.9	30.7	34.7	31.8	13.6	15.4	
CO ₂	-34.4	-33.0	-31.5	-30.0	-25.0	-25.9	
Fuel	4 . I	3.6	2.4	2.7	2.6	2.1	
Secondary sources	21.1	5.6	11.9	14.8	29.7	32.8	

Predicted Greenhouse Gas Emissions

Predicted Greenhouse Gas Emissions (n=3 selected farms)

- Effect of animal density on PGHGE depends on farm system/ management
 - Farm data + model
 predictions = powerful
 for devising best
 management practices
 Scope limited to 3
 selected farms

Acknowledgment

Project Supported by USDA National Institute of Food and Agriculture Organic Agriculture Research and Extension Initiative Grant No. 2010-51300-20534

United States Department of Agriculture National Institute of Food and Agriculture

