

The effect of reproductive performance on the herd value assessed by integrating a daily dynamic programming with a daily Markov chain model

Afshin Samia Kalantari Victor E. Cabrera

Outline

- > Introduction
 - ✓ Background
 - ✓ Objectives
- Material & Methods
 - ✓ Daily Dynamic Programming model
 - ✓ Daily Markov Chain
 - √ 5 different Reproductive programs characteristics
- > Results
- **≻** Conclusion

Introduction

Reproductive Performance

Replacement Policy

- ✓ Milk yields
- ✓ Available replacement heifers
- ✓ Culling rates

Dairy Herd's Profitability ✓ High cost of Maintaining a dairy herd

Objective

□ Determining the effect of reproductive performance on dairy cattle herd value

DP

Developing a daily DP model

MC

Combining with a Daily Markov chain model

Herd value

 Compare different reproductive programs' herd values

Daily DP model

A technique that uses divide and conquer algorithm

 In this study value iteration method was used to find optimal replacement decisions with daily stage length

DP Model

- DP model Retention Pay-Off (RPO)
- RPO = Expected profit from keeping the cow compared with immediate replacement

Daily Markov chain model

- Is a simulation method
- After optimizing with DP daily Markov chain was used to simulate the herd demographics

 This model find the structure or proportion of cows at steady state for cow states

Herd Value

was defined as the herd's weighted average

Reproductive programs chars

	First Al			Second and subsequent AI			
R e p r o Program	E D before 1 st TAI	CR ED before 1 st TAI	CR TAI	E D before TAI		CR TAI	21dPR(%)
RP1	-	-	42	-	-	30	17
RP2	70	25	32	70	25	28	14
RP3	50	30	36	50	30	30	16
RP4	30	35	40	30	35	30	18
RP5	80	35	30	80	35	28	20

^{*} A subset of reproductive programs studied in Giordano et al. (2012)

Results

Herd values (US\$) for five repro programs across five milk classes

Ranking changes of 5 repro programs across 5 milk classes

Source of difference btw repro programs

Conclusion

 Positive relationship between Reproductive performance and herd value

- There could be an opportunity to adjust the reproductive programs according to milk class
- daily decisions of assigning cows to different reproductive management groups based on their RPO Improving a herd value

Conclusion...

RPO for different DIM at pregnancy

Changes in RPO for pregnancy at 120 DIM

