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MODELING AND ANALYZING SMALL FARM LIVELIHOOD 
SYSTEMS WITH LINEAR PROGRAMMING 

 
 

PREFACE 
 
This set of learning exercises constitutes a manual designed for graduate students 
and others interested in agricultural development in countries where small-scale, 
limited-resource family farm livelihood systems are important to the national 
economy. It was developed for the course AEB 5167, Economic Analysis in Small 
Farm Livelihood Systems, in the Food and Resource Economics Department at 
the University of Florida. It has been used in short courses for international 
agricultural development workers (research and extension) as well. Because of 
the highly varied background of those interested in development, the exercises do 
not require a high level of mathematical nor economic sophistication, but a 
minimum level of computer literacy is assumed. 
 
The course, AEB 5167, is based on the philosophy that the best way to analyze 
small-scale limited-resource family farms is to intimately understand the 
relationships and interactions integral to them. Responses of these men and 
women farmers to new technologies, modified infrastructure, or price or policy 
incentives are molded by the constraints on these livelihood systems because the 
farms are a home, not just a business. For this reason, gender analysis and 
household composition are critical components to be incorporated explicitly. It 
has also been found that seasonal cash flow and seasonal food availability are 
important drivers of these livelihood systems and must be incorporated on a 
multi-period basis within a year. 
 
Relatively simple, single year models are very useful for many analyses. However, 
when livestock, fallow systems and perennial crops are involved, as is the general 
rule, then multiple-year, dynamic models are usually indispensable. The last set 
of exercises incorporates these aspects of analysis. 
 
After an introduction to linear programming and the use of Excel ® (an example 
of a spreadsheet capable of solving linear programming problems) the exercises 
begin with a simple situation that is easy to model. Each additional exercise 
introduces a new procedure to help make the model more realistic. It is also 
suggested that when users begin to construct their own models, they follow the 
same step-by step procedure making sure that solutions are feasible and the 
matrix is behaving as anticipated prior to making it more complicated. Once a 
large matrix is constructed, it is much more difficult to trouble shoot. It is 
important also for users to interpret each solution in turn to help in improving 
the ultimate model. 
 
The suggested matrices are not the only way to set up the exercises. There could 
be a number of “correct” ways to structure any particular situation. 
Beginning with exercise one, it is strongly suggested that the user of 
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this manual attempt to construct his or her own linear 
programming matrix before looking at the suggested matrix. The 
important point is that there should be internal consistency and that the model 
reflects all the constraints and interrelationships that exist in the livelihood 
system being modeled. It is also necessary to determine and use appropriate 
objective functions (what the farm family is trying to achieve). 
 
By the time users of this manual have completed all the exercises, they should be 
able to begin construction of their own models using their own data for the 
number of purposes for which linear programming is useful. 
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I. INTRODUCTION TO MATRIX CONSTRUCTION AND SOLUTION 
WITH MICROSOFT EXCEL® 

 
Linear Programming (LP) is a useful, and with the wide availability of laptop 
computers, easily available method for describing and analyzing family farm 
livelihood systems.  A livelihood system is the full range of activities available to 
the individuals in a particular set of small farm households.  Farmers select from 
among these options those that comprise their livelihood strategies – those 
activities that best contribute to achieving the household’s production and 
reproduction goals to survive and thrive. A well-designed linear program (LP) 
reflects these choices by selecting a combination of farm and non-farm activities 
that is feasible given a set of fixed farm constraints and that maximizes (or 
minimizes) a particular objective or family goal while achieving other goals such 
as food security. The LP model requires the following in each farm household 
situation: 1) the farm and non-farm activities and options available in the crop 
and livestock sub-systems with their respective resource requirements, and any 
constraints on their magnitude; 2) the fixed resources and other maximum or 
minimum constraints that limit farm and family activities; 3) cash costs and 
returns of each relevant activity; and 4) a defined objective or objectives. 
 
An example is used to introduce matrix construction and solution using an Excel 
spreadsheet format. A hypothetical farm model is created in a hypothetical 
country. Crops considered are sweet potatoes, sorghum, beans and peanuts, 
Table A.  
 

 
Table A. Basic linear programming matrix 
 
Land is limited to 2 ha (cell I8), male labor to 40 days, female labor to 25 days 
and beginning cash on hand to 30 dollars. Cash income (ending cash) for one 
hectare of each crop, assuming the product is sold, is as follows: sweet potatoes, 
$80; sorghum $20; beans, $45; and peanuts, $55. These values are in row 12. 
Labor and beginning cash requirements for one hectare of each crop are also 
shown in Table A. For instance, production of one hectare of sweet potatoes 
requires 20 days of male labor (cell D9), 20 days of female labor and no 
beginning cash. The Right Hand Side (RHS) represents the constraints on the 
resources (cells I8 to I11). The RHS also indicates that the family needs at least 
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$130 at the end of the year ($30 for the next year's crops and at least $100 for 
other necessary expenses), cell I12. The variable row (row 6, cells D to G) 
indicates how many units (hectares in this case) of each crop comprise the 
solution that best satisfies the objective or goal. Table A represents the basic 
structure of a linear programming matrix for this kind of farm situation. 
 
 
The desire (objective or goal) of this hypothetical farm family is to maximize the 
amount of cash available at the end of the year. This is the sum of the amount of 
ending cash for each crop (when sold), per ha, multiplied by the area (hectares) of 
each crop that ends up in the solution. Excel has a convenient formula that can 
do this for us. It is called =sumproduct. The use of the formula is shown for cell 
J12 (the solution cell) in Table B.  Notice that when you enter the formula, a 
number (zero at this point) shows in the cell.   
 

 
Table B. Formula for objective function  
 
When the computer is solving the problem, it must also keep track of the amount 
of each of the resources or constraints being used at each step (iteration) in the 
process. The =sumproduct formula is also used for this and the formula for 
land is shown in Table C. The $ sign before the 6 (C$6:F$6) is useful for copying 
the formula down to the other rows. The $ holds the row being multiplied to row 
6 where the variables are. Otherwise, when you copy the formula down to the 
other rows, the spreadsheet would move that row down as well.  
 

 
Table C. Formula for resource use  
 
Table D shows all four formulas for the RHS as well as for the objective function.  
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Table D. All formulas  
 
 
NOTE:  When you set up the matrix for solution, follow the rows and 
columns carefully as shown in the examples. 
 
To solve the linear program with Excel, use Tools/Solver/, (Figure 1): 
 

Figure 1 Set-up of Solver dialog box 

 
 

 Identify the solution cell (in this example) as $J$12. “$J$12” can simply 
be typed into the Set Target Cell box or you can click on the red arrow 
and highlight cell J12, and then minimize the parameters window. 

 Make sure the problem is to “Equal to: Max” (select it by clicking). 
 Identify the variable cells by clicking on the red arrow, then highlighting 

the variable cells ($D$6:$G$6) and then minimizing the parameters 
window. 

 To incorporate the constraints, first click Add next to the “Subject To 
Constraints” box, then highlight the resource use cells (those with the 
formulas, or J8 to J11), then click <= (less than or equal to) and then click 
on the arrow for the constants (RHS) and highlight the constants (I8 to 
I11). This tells the computer that the solution cannot use any more of the 
resources than available (the use must be <= to the amount available). 
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 To incorporate the minimum end cash, click Add again, then click on 
cell J12 (or type it in the space), then click >= (greater than or equal to), 
and then click on the arrow for the constants (RHS) and highlight the cell 
with the minimum amount of ending cash (I12). 

 It is also necessary to tell the computer that the variables cannot be 
negative. So go to Options and chose Assume Non-Negative. 

 Still on Options, choose “Assume Linear Model” to make sure it uses 
only linear functions. 

Figure 2. Solver options 

 
 

 Click OK on the Sover Options menu. 
 To solve the model, click Solve on the Solver Parameters menu. 
 When the solver results window appears, it will indicate that solver has 

found a solution and that all constraints and optimality conditions are 
satisfied. Leave marked (by default)  Keep Solver Solution and 
highlight on Reports (Answer, Sensitivity, and Limits) and these will be 
posted in three new sheets. The Detail Report is not usually needed. 

 
Figure 3. Solver results confirmation 
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If you entered the problem correctly, this should provide you with a solution as in 
Table E which shows that the strategies for this farm, as specified in the model, 
are to produce 1.08 ha of sweet potatoes, 0.06 ha of sorghum, no beans, and 0.86 
ha of peanuts. All the land is used, as well as all the female labor and beginning 
cash, but some male labor is unused (about 6.2 days) . End cash exceeds the 
minimum by nearly 5 dollars. 
 

 
Table E. Solver solution of the simulated system 

 
If you have successfully completed this exercise, you should be ready to begin 
formulating and solving the following exercises. Remember, in each exercise try 
to set up the matrix based on the discussion of the situation before you look at 
the suggested matrix. 
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II. INTRODUCTION TO EXERCISES 
 
The following exercises are designed to introduce you to the concepts and 
mechanics of linear programming (LP). The software used is Excel ®, but other 
spreadsheets are also amenable to LP. Each of the nine exercises introduces a 
new concept and new mechanics. After you have understood and mastered these 
exercises you will know most of what you need to develop your own linear 
programming models. The values used in the problems are not necessarily 
realistic, but the exercises are set up in a realistic manner. 
 
Scenario 
 
A farming systems field team wants to pretest some technologies and be able to 
predict what responses the small-scale farmers in their area of responsibility 
might make to these potential changes. The first task is to simulate the livelihood 
system available to the small farms in their area (a descriptive model). Once 
they have a model that adequately reflects the livelihood system, the team uses 
the model to assess potential changes in livelihood strategies of individual 
households and then assess potential adoption of a proposed new technology. 
The model can also be used to provide information to the government about 
probable varying responses of diverse farmers to a proposed change in price 
policy (predictive models). 
 
Exercises 
 
The exercises present a situation and ask you to create a linear programming 
matrix that accomplishes what the team has in mind. Suggested matrices and the 
solutions are provided, but should not be used until after you have attempted to 
build your own matrix. Compare the solutions with your own. 
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Exercise 1. Basic LP matrix 
 
Situation 
 
You are a member of a team responsible for improving technology in an 
impoverished area of your country. The team has been working with farmers and 
has some ideas for improving the productivity of the farms in its area of 
responsibility and the cash income available to the families for discretionary 
spending. 
 
The team members want to pre-evaluate some alternatives they think might 
interest the farmers. To do this, they want to use linear programming. First they 
must simulate the livelihood system in the area. That is, the first step is to create 
a descriptive model of the many activities available to all households for which 
the livelihood system is relevant.  These activities must include those available to 
all members of the household, and whether conducted on or off the farm.  As they 
begin to develop the model, they will work with a typical household and its set of 
resources. 
 
Note: The values used in this and the following examples are not 
necessarily realistic. When you create your own models, they should 
be as realistic as possible. 
 
The household the team starts working with produces goats, maize and hay, and 
some of the farm is often in fallow. The household (man, wife, adolescent male, 
child) farms 3 ha. For the year, they estimate 115 days of labor available for 
production activities and $700 of cash available for production. The team 
calculates that a goat requires 0.1 ha of pasture (not including the fallow), 7 days 
of labor and $49 of the beginning cash reserve. The annual cash income per goat 
is $330. A ha of maize would return $1800 cash income and a ha of hay, if sold, 
would return $300 cash. A ha of maize requires $200 of the cash reserve and 40 
days of labor. A ha of hay requires $150 of the cash reserve and 30 days of labor. 
The farm family wants to maximize cash available for discretionary spending (the 
cash available after satisfying food and other household needs and necessary cash 
expenses). At the very least they need $1000 non-discretionary cash at the end of 
the year. This provides for the $700 cash needed at the beginning of the next year 
as well as for other necessities not produced on the farm. The amount of cash 
available at the end of the year above $1000, then, is available for discretionary 
spending. 
 
Exercises 
 
I. Construct the linear programming matrix following the format used in the 

introductory model. Carefully label all variables, constraints, and units for 
rows and columns. The objective is to maximize cash available for 
discretionary spending at the end of the year.  Remember; try to set up your 
model before looking at the suggested model on the next page. 
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II. Solve the problem to determine if there is a feasible solution. 
 
Note: An infeasible solution means all constraints cannot be met. An unbounded 
matrix means there is no effective limit to the objective function. 
 
III. Discuss and interpret the solution if it is feasible. (See, for example, the 

discussion of this solution in the Situation statement for Exercise 2.) 
 
 
 

 
Table 1. Suggested matrix and the solution for exercise 1
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Exercise 2. Intermediate products and accounting rows 
 
Situation 
 
In the solution to the first exercise, both maize and goats are produced, but no 
hay. However, the farmers say that goats must have hay to supplement the 
pasture and there is no real market for hay. This oversight in the elaboration of 
the first model must be corrected. The farmers estimate that a goat requires 0.6 
tons of hay. One ha of land in hay produces 4 tons of hay. 
 
Exercises 
 
I. Modify the LP matrix from the first exercise to include a hay accounting 

row. Remember that if hay is fed to the goats and not sold directly, the value 
for hay in the objective function cannot reflect the value of the hay if it were 
sold (otherwise, you would be indicating you are selling it and feeding it as 
well). 

 
Note: Because hay is produced in one activity and used in another (it is an 
intermediate product), it is necessary to have an accounting row in the 
matrix (hay accounting). The initial constraint (RHS) for this row would be <= 
zero if there is no hay in storage at the beginning of the year.  A positive number 
in the RHS of the accounting row, such as 2, would indicate that two tons of hay 
were in storage at the beginning of the year and could be used before it would be 
necessary to produce more.  Because resource-using coefficients are positive, an 
activity that produces a product or resource must have a negative coefficient in 
the accounting row. Also note that if this accounting row is added inside the 
matrix (say between labor and cash), the formulas in the resource use column 
will automatically adjust. You will only need to copy the resource use formula 
(the =sumproduct formula) from labor to hay accounting. 
 

II. Discuss and interpret the solution. 
 

 
Table 2. Suggested matrix and the solution for exercise 2
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Exercise 3. Family consumption constraints, transfer activities and cash flow 
 
Situation 
 
In the second exercise, only maize entered the solution, and it was all sold 
(compared with the first solution, this reflects the fact that goats now require 
more resources – those needed to produce the hay they need – and therefore, 
return less cash to the resource base). However, no maize was stored for family 
consumption. The farmers estimate that 35 cwt of maize is required for family 
consumption (the consumption constraint, one of the family goals), and this 
is usually produced on the farm rather than purchased. The dependable yield of 
maize is about 30 cwt per ha. Surplus maize is often sold. 
 
Exercises 
 
I. Modify the LP matrix from the second exercise to provide for at least 35 cwt of 

maize for family consumption. Also structure the matrix so that any surplus 
maize can be sold (at a price of $60/cwt). This requires a maize accounting 
row because there are alternative uses for the maize. The maize production 
activity produces maize (30 cwt/ha) into the maize accounting row (a negative 
coefficient), and the maize selling activity takes maize (uses it) out of this row 
(a positive coefficient). Maize must also be transferred out of the maize 
accounting row and into the maize consumption row with the use of a 
transfer activity. 

 
Note: To simplify the manipulation of the matrix, it is useful to consider the 
consumption requirement as a "sink," as opposed to the "stock" of resources. 
Because the stocks are positive values, the sink must be a negative value. The 
values that contribute to the "sink," that is the aij values, must also be negative. 
The inequality is then <= as in the other rows. 
 
II. Change the concept of cash income to cash balance at the end of the year, 

CSH END YR. Because the ending year balance includes any cash not used 
from the beginning year balance, a cash transfer activity is also needed to 
transfer any unused funds from the beginning year balance to ending balance. 
Because in the CSH END YR row income is positive and expenses are 
negative, the transfer activity coefficient in the CSH END YR row will be 
positive (it increases cash balance). If maximum year end cash balance is the 
objective, all unused beginning year cash will be transferred to the year end 
cash when the sign of the CSH BEG YR is <=. If something other than 
maximum year end cash balance is the objective the CSH BEG YR row should 
be an equality to assure that all cash not used at the beginning of the year is 
transferred to the end. 

 
III. Discuss and interpret the solution. 
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Table 3. Suggested matrix and the solution for exercise 3. 
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Exercise 4a. Gender disaggregating and gender analysis 
 
Situation 
 
In the solution to Exercise 3, no goats are produced, but it is from goats that 
women in this livelihood system receive income. The team is aware that some of 
the alternatives they may want to evaluate may be of more interest to one 
household member than others. Also, they are not completely satisfied with the 
solution so far achieved. For this reason they want to disaggregate beginning 
and ending cash balances and labor for the men and the woman. 
 
The family and the team estimate that the men provide 70 of the 115 days of crop 
and animal labor and the woman 45. Labor requirements for the various farm 
tasks are: 
  maize   hay goats 
 men     30    25     1 
 woman    10      5      6  
 
The man controls $500 of the CSH BEG YR and the woman $200. Cash 
requirements from each for the various farm tasks are: 
  maize   hay goats 
 man     200   150    10 
        woman      0       0    39   

 
The man controls the cash from any maize sold and he splits the cash from the 
goats with the woman. The man must have a minimum annual income, above the 
CSH BEG YR, of $100 to meet family responsibilities and the woman needs $200 
income annually plus their $200 CSH BEG YR. Income distribution for the 
income-producing activities is: 

 Maize selling   goats 
Man         60      130 
Woman        0      200 
 

Exercise 
 
I. Separate CSH BEG YR, CSH END YR and labor constraints into those of the 

men (father and adolescent son) and those of the woman. Because both the 
man and the woman require a certain minimum CSH END YR balance, set 
minimum constraints so that the man has >= $600 and the woman >= $400 
CSH END YR. It is convenient, also, to include a household or total CSH END 
YR row although this does not need a minimum value (the initial constraint 
will be >= zero). 

 
II. Solve the program for objective functions that maximize 1) M CSH END YR, 

2) F CSH END YR, and 3) TOT CSH END YR. 
 
III. Compare the solutions and interpret the results. 
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Table 4a. Suggested matrix and the solution for exercise 4a (TOT CSH END YR). 
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Exercise 4b. Creating input and output tables 
 
Small formulations of a linear program are relatively easy to understand from the 
solution and answer report. However, as the matrix gets larger, and as analysis 
begins (where prices, inputs, yields, resource amounts, etc.) may be varied, it is 
very convenient to construct input and output tables that interact directly with 
the LP matrix. 
 
It is probably most convenient to create the tables on additional pages of the 
same spreadsheet. Table 4b, below, is the matrix, found on the page labeled LP. 
The input tables are found on the page labeled INPUT, and the output table is 
found on the page labeled OUTPUT. 
 
a) Input tables 
 
The function of the input tables is to provide an easy way to see what input 
coefficients were used in the matrix and to change them, if desired, for different 
analyses. Page INPUT shows the land, labor and consumption constraints, the 
yields and prices of crops, the labor required for the different activities, and the 
cash requirements. These are linked and interactive with the matrix (LP page) as 
shown in the table. For instance, the male labor requirement for maize, cell D11 
in the matrix, shows the formula =INPUT!C21. This formula means that the 
coefficient for D11 in the LP matrix contains the value found in cell C21 on page 
INPUT (the number 30). Maize requires 30 units of male labor.  Notice that in 
order for the formula to appear in the cell, there is a space just prior to the 
formula.  Removing this space (or not putting in the space to begin 
with) allows the correct number to appear as shown in the second 
table. 
 
All formulas begin with the equal sign (=). Because all input table values are 
positive, using only the equal sign in the formulas will produce positive values in 
the matrix as well. When a negative value is needed in the matrix, the cell 
designation within the formula should be preceded by a minus sign (-). For 
example, the values in the matrix for maize yield, cell D14, and maize 
consumption, cell L15, should be negative. The formulas used are =-INPUT!C28 
and =-INPUT!C13 respectively. 
 
b) Output tables 
 
Output tables take results from the solution of the matrix and put them in the 
output table. The output table for this matrix is found on page OUTPUT. Cell C4 
on page OUTPUT has the formula =LP!D8. This means that the area in maize 
taken from the solution of the matrix on page LP, cell D8, will appear in cell C4 
on page OUTPUT. 
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Table 4b. LP page linked to INPUT and OUTPUT pages. The top matrix shows 
the links and the bottom matrix shows the values.   
 

                
Table 4c. INPUT and OUTPUT pages linked to the LP matrix
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Exercise 5. Resource flow and integer solutions  
 

Situation 
 
The simulation achieved in Exercise 4 by maximizing household income is more 
realistic than previous solutions or than solutions that maximize income to the 
woman or the man. However, the team and the family members note a few more 
discrepancies. By using all 70 days of the available male labor and all 45 of the 
available female labor, they are able to produce more maize than usual, allowing 
the man to sell 15 cwt. They feel that labor is being borrowed from one period to 
another so they decide to consider labor and cash resources by semester. 
Note that smaller divisions such as month or week may be necessary in many 
cases. 
 
The men's labor is divided 50 units in the first semester and 20 in the second 
(when they spend time hunting). The woman, who does not hunt, has 25 units of 
labor available in the first semester and 20 in the second. They have also been 
over estimating the amount of cash used for production at the beginning of the 
year. They now estimate the amount to be $400 for the man and $50 for the 
woman. Of course, any cash not used in the first semester is available in the 
second.  Any cash earned in the first semester is available at the beginning of 
the second semester. Maize can only be sold in the second semester, but goats 
can be sold in either. The woman's income from the goats is the same either 
semester ($200), but from selling the goats in the first semester the man receives 
$80 and $130 in the second. The man requires a minimum end of year cash of 
$500 and the woman $200. Any cash received in the second semester is 
considered year end cash. 
 
Maize, produced in the first semester, uses 30 days of the men's labor and 10 of 
the woman's as well as $200 of the man's cash. The man sells maize only in the 
second semester. Hay uses 5 days of the men's labor in the first semester and 20 
days in the second. The hay also requires 5 days of the woman's labor in the 
second. The goats require 0.5 days of the men's labor each semester and 3 days of 
the woman's labor each semester. Goats also use $5 of the man’s cash each 
semester, $20 of the woman’s the first semester and $19 the second. 
 
Exercises 
 
I. Separate labor and cash into two semesters for both the men and the woman. 

Previously there was only one time period, with cash balance rows for the 
beginning and the end of the year; now, with the year divided into two 
semesters, you will need cash balance rows for the beginning of each 
semester. Expenses are incurred at the beginning of the respective semester, 
and income is generated at the end of the semester, so is available at the 
beginning of the next semester or year end. Also, create separate year-end 
cash balance rows for the man, the woman, and for the household. Be sure 
that any cash left over in the beginning of semester one is transferred to the 



Linear Programming in Small Farm Livelihood Systems. Hildebrand & Cabrera, 2003 
 

 21

beginning of semester two and that all cash that comes into the end of 
semester one is available at the beginning of semester two. Similarly, any cash 
left over in the beginning of semester two must be transferred to the end of 
the year. Year-end cash will include any leftover cash transferred from the 
beginning of semester two as well as any cash that comes in at the end of 
semester two. Goat production can still be one activity, but selling goats must 
be divided into two semesters (be careful not to sell the same goats more than 
once!). 

 
II. Set up the new matrix, solve the problem, and interpret and discuss the 

solutions when end of year cash is maximized for 1) the man, 2) the woman 
and 3) the household. 

 
III. In order not to have a fractional amount of goats in the solution, in the solver 

set an integer constraint on goat production and selling activities forcing 
them to be integers. With integers, also obtain solutions when labor is 
minimized (Chayanovian) or cash productivity of labor (end yr cash/total 
labor) is maximized. Discuss the implications of the different household goals.  

  
Note: In order to maximize the cash productivity of labor, total labor must be 
summed and included in the denominator of the formula. Prior to running the 
LP, all resource use sumproducts, including labor, initially will be zero. In Excel, 
trying to divide any value by zero, or in this case by a formula that produces a 
value of zero (total labor), will produce an error term (#DIV/0), and the solver 
will not work. To avoid that problem, add a very small value (i.e. 1E-20) to total 
labor. Additionally you will need to uncheck the linear model assumption in the 
options prior to solving it. 
 
 

 
Table 5. Suggested matrix and the solution for maximizing cash productivity of 

labor when goats are set integers for exercise 5 
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Model calibration and validation: Is it ready to use? 
 
Linear programming models should never be considered as finished tools.  
Rather, they are always a work in progress, always capable of being improved 
with new information.  However, before they can be used to help predict 
responses to changes in technology, infrastructure, prices, resource availability or 
policies, they need to be validated to assure the users that they do, in fact, 
adequately reflect conditions in the communities being modeled. 
 
Validation of models is not an exact science.  In models like those in this set of 
exercises, one method of evaluation is simply the modeler’s sense of how well the 
model reflects the conditions being modeled.  Care needs to be taken not to force 
the model into compliance artificially by setting limits on variables or constraints 
that do not really exist.  For example, if farmers in the area normally have no 
more than one or two head of livestock, but the model consistently indicates 
many more, then the approach is not to set an artificial limit of two on the 
activity.  Rather, the reasons no more than one or two head are found must be 
determined.  Perhaps availability of grazing was not taken into consideration.  It 
could be that yields of the livestock feed produced on the farm were too high, 
artificially allowing the model to select more livestock than really can be fed.  
Inputs in the livestock activity may be under estimated.  This process of 
validation obviously helps improve the model and is valuable to the modeler.  It 
also helps maintain flexibility in the model so it can respond to the kinds of 
stimuli that will be asked of it when it is being used for the purpose for which it 
was constructed.  An artificially constrained model simply cannot respond to 
stimuli so it loses its value in use. 
 
But if the model consistently shows one head or three rather than the more 
normal two, is this a serious problem?  Here the modeler must depend on 
subjective evaluation.  It may be decided that the model, in its present form, is 
adequately valid that it can be put into use, while at the same time, the modeler 
searches for more definitive data.  For example, it may be that differences in 
household composition account for the human resources needed for livestock 
husbandry.  Perhaps the presence or absence of an adolescent male may make the 
difference. 
 
In some instances, a more methodical procedure can be used, but still subjectivity 
will be involved.  If a relatively large number of households in a community have 
been modeled from a single base model, then a statistical comparison of the real-
world data and the results of the model solutions could be compared.  Areas in 
the main crops can be compared, for instance.  The sampled area in maize on 
each farm can be compared with the area in maize from each of the model 
solutions.  A “t” test can be used to ascertain the level of probability that these 
two series represent the same population.  But here again, the modeler (or a 
superior) must decide at what level of probability to accept the validity of the 
model.  Is a 5% level required or is 10%, 15% or even 20% adequate?  If a modeler 
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or the modeler’s organization insists on a 5% level prior to considering the model 
valid, the benefits of the model may never be realized.  A flexible model that 
reflects a 20% level of confidence still will be better than an artificially 
constrained model that is forced to fit at a 1% or 5% level of confidence. 
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Exercise 6. Assessing alternative technology (hypothesis testing) 
 

Situation            
 

The integer solution to the fifth exercise, when maximizing the household end 
cash, simulates the current livelihood strategies of the household in this 
livelihood system quite well. Sufficient maize is produced to feed the household, 
and only a limited amount is sold. Two goats are produced in a small pasture (0.2 
ha) and about a third of a ha of hay is produced for the goats. About one third of 
the farm is in fallow. Both the man and the woman have some time in the second 
semester (the man to hunt and the woman to make clothes). Reserve cash is not a 
constraint for the woman nor for the man.  The woman has a limited amount of 
discretionary cash to spend ($372-$200=$172) and the man has $478. The team 
considers that the model is ready to use for hypothesis testing or pre-
evaluation of alternative technologies or activities. 
 

Note: In your own models, validation is a more thorough process. 
 

Alternative to consider 
 

The cash return to the household from the sale of goats is quite low ($280 in the 
first semester and $330 in the second). Because some land is in fallow, an 
alternative could be to produce more maize to feed the goats. It is anticipated by 
the team that maize-fed goats could increase household income. Estimates are 
that they could produce more and higher quality goats. This would require 4 cwt 
of maize per goat. About 0.625 tons of hay should be sufficient for each goat fed 
maize. Labor would increase to about 10 days per goat (0.75 days each semester 
for the man and 4.25 days each semester for the woman). The man’s cash 
requirement would be the same ($5 each semester per goat) but the woman’s 
cash would increase to $26.25 each semester. The value of the maize-fed goats 
would increase to $375 when sold in the first semester ($107 for the man and 
$268 for the woman) and $444 when sold in the second semester ($175 for the 
man and $269 for the woman).  
 

Exercises 
 

I. Assess a maize-fed goat activity as an alternative to possibly be incorporated 
into the present system, or perhaps substituted for the present goat 
production system. To do this, the present matrix (and system) is left as 
satisfactorily simulated in Exercise 5. The new activity, the maize-goat 
activity, is added to the matrix in Exercise 5 so that the linear program 
solves for maximum household year end cash when the proposed new 
activity is in competition with existing farm activities. Note that 
because the price received for the different kinds of goats is different, it is 
necessary to have separate selling activities for each class of goat. The solution 
should incorporate the integer constraint on numbers of goats produced and 
sold. 

 

II. State a hypothesis to be tested by solving this linear program. 
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III. Solve, discuss and interpret the solution and use it to accept or reject the 
hypothesis. 

 
 
 

 
Table 6. Suggested matrix and the solution for exercise 6 
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Exercise 7. Policy analysis (Prediction) 
 
Situation 
 
The country is forced to import maize for consumption in the urban areas 
because there is not enough sold by the small producers who produce about 80% 
of the country’s maize. The Ministry of Agriculture has argued with the Ministry 
of Finance that the import duty on fertilizer needs to be dropped so that farmers 
can afford to purchase it. Their farming systems teams have told them that small 
farmers feel the cost of purchasing and transporting nitrogen to the farm comes 
to an average of about $2.475 per kilogram of N, too high to use on maize. On-
farm trials with small producers, however, indicate that the use of 100 kg of N per 
ha should increase maize yield by 50%.1 The President of the country is excited by 
the possibility of increasing production by 40% (50% increase in production by 
80% of the maize) and even thinks of exporting maize. He wants to convince the 
Minister of Finance to eliminate the import duty on nitrogen but needs a more 
complete analysis of what would happen if small farmers could obtain the 
nitrogen at half the current cost. 
 
The team you are with estimates that the application of nitrogen would require 
about 6 additional days of the men's labor during the first semester and about 2 
additional days of the woman's. 
 
Exercises 
 
I. Modify the matrix from Exercise 5 to include the new activity of fertilized 

maize (remember to keep the present maize activity so the program has to 
choose between ways to produce maize). 

 
II. Analyze and interpret the solution. Write a report to the President including 

not only what happens on the farms represented by your model of a typical 
household in this livelihood system, but also what might happen to maize 
production and amount marketed for the country as a whole, assuming the 
price of maize stayed the same. 

 
III. The farming systems team thinks that if farmers used nitrogen to produce 

maize it might make their maize goats alternative more attractive. Take 
another look at the maize goats alternative (Exercise 6) by adding the 
fertilized maize. Discuss the results. 

 

                                                 
1 The average small farm production function is estimated as Y = 30 + 0.2175 N - 0.000675 N2, where Y is 
kg ha-1 of maize and N is kg ha-1 of nitrogen. 
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Table 7a. Suggested matrix and the solution for exercise 7-I 
 
 

 
Table 7b. Suggested matrix for and the solution for exercise 7-III 
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Exercise 8a. Household composition, food security and production labor stress 
 
Linear programs can be used to model individual farms or can be representative 
of a type of farm within a livelihood system. When they are meant to be 
representative of a group of farms, they often are based on average values found 
from a survey. The problems with using averages are 1) averages represent very 
few of the real farms from which the survey was taken, and 2) averages mask 
diversity and individual household differences. An “average” household will have 
some fraction of young children and some fraction of older children. Older 
children are considered to be available to help with adult tasks, either in or 
around the house (reproduction tasks, most common for older female children) 
or the field (production tasks, most common for older male children). 
Consumption requirements reflect the needs of a household average, not the 
individuals. Hence, solutions based on averages may be very misleading. 
 
It is tempting to aggregate results of a linear program based on an individual, 
average farm and/or household to the level of a community or higher scale. Such 
an aggregation will be misleading for the reasons explained above. However, 
when a range of household compositions representative of a 
community is utilized, and solutions obtained, these can be 
aggregated with much more realistic and valid results. 
 
Situation 
 
The team has noticed that the model in Exercise 5 does not reflect what many 
other households do. They have decided that household composition is one of the 
keys that needs to be explored. The household used in the previous models 
included a mother, father, one male adolescent, and one young child. 
 
The team looked further into the situation regarding household composition, 
labor availability, and food requirements. They then made the following 
estimates. Male labor I should be based on 30 units from an adult male and 20 
from each adolescent male. Male labor II should be based on 10 units from each. 
Female labor I should be based on 30 units from an adult female and 20 from any 
adolescent female less 5 units of female field or production labor for each child in 
the family. Female labor II should include 25 units from an adult female and 20 
from any adolescent female minus 5 units for each child. The females seldom 
help the males with their work. Annual maize consumption should be based on 
the following needs: adult male, 12 cwt; adult female, 10 cwt; adolescent male, 10 
cwt; adolescent female, 8 cwt; and each child, 3 cwt. 
 
Exercises 
 
I. Construct three input tables to incorporate the values above. One table will be 

for family composition. Another will be maize consumption, and a third will 
be available labor. Incorporate these tables into the matrix from Exercise 5 to 
make them interactive. 
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II. Solve for the following household compositions: 
 
HH No. Adult male Adult female Adoles. Male Adoles. Fem Children 
 1 1 1 0 0 0 
 2 1 1 0 0 1 
 3 1 1 0 0 2 
 4 1 1 1 0 1 (Exercise 5) 

 5 1 1 0 1 1 
 6 1 1 1 1 0 
 7 1 1 0 1 0 (male leaves 1st) 

 8 1 1 1 0 0 (female leaves 1st) 

 
 In some cases there is no feasible solution because male labor is constraining 

at a level too low to produce sufficient maize for family consumption. 
Estimate how much additional male labor is needed (this is a measure of 
stress on the male members of the household) in order to satisfy stated 
household food needs. Using this level of male labor availability, obtain a 
feasible solution.  Using the original male labor availability, also estimate how 
much less maize consumption would be required to get a feasible solution.   
This would reflect the consumption of a less than satisfactory diet by 
members of this household. 

 
III. Compare the maize consumption, excess male labor requirements (male 

stress level), and end year cash for each of the solutions obtained above with 
Exercise 5 (1-1-1-0-1). 

 
Exercise 8b. Aggregating to a higher scale 
 
IV. Within the community where the team is working, the proportion 

(percentage) of households that falls into each of the above household 
composition groups is as follows: 15, 5, 12, 20, 20, 12, 8, and 8, respectively. 

 
 Calculate the weighted, average household composition for the population of 

the community (1-1-0.375-0.375-0.625). Solve your model for this household 
composition. How does this solution compare with the others? 

 
V. What are the implications for modeling potential responses to new technology 

or policy incentives? 
 
 



Linear Programming in Small Farm Livelihood Systems. Hildebrand & Cabrera, 2003 
 

 30

 
Table 8a. Suggested matrix and the solution (family 1-1-1-0-1) for exercise 8 
 
 

 
Table 8b. Suggested input tables connected to the matrix 
 
 

 
Table 8c. Different solutions for different household compositions
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Exercise 9. Dynamic programming 
 
Many activities on a farm are not completed during a year. Most livestock and 
any perennial crops are examples. In order to analyze these kinds of enterprises 
adequately, it is necessary to extend a model over more than one year. Multiple 
year models are called dynamic because what happens in one year affects what 
happens in others. Trees planted in one year may not produce for three or four 
years. Two-year-old trees are different from three-year-old trees. Animal 
inventories must be maintained to keep track of births, young stock prior to 
breeding age, older animals, death losses, sales, and home consumption. 

 
Exercise 9a. Animals 
 
Beginning with Exercise 5, the farming systems field team has decided that it 
needs to be more realistic with respect to goats. 
 
Situation 
 
The team wants to build a three-year model of the farm. The team found that 2 
young goats (kids) are required for family consumption every year and that these 
are produced on the farm. The birth rate is usually two kids per female per year. 
Surplus kids are often sold on the market; this requires a kids accounting row. 
Older goats as well as kids must be transferred from the first to the second year 
and so on. In the second year, kids are considered yearlings. Consider a 20% 
annual death loss of the goats during the year. Start the 3-year period with a 
flexible size herd. That is, let the model decide how many animals it would 
include, but consider only female goats. Do not consider purchasing goats. Labor, 
land and pasture requirements for the yearlings are half that of the adult goats. 
Yearlings require no cash inputs. Prices for the kids sold are the same as that 
used for goats in Exercise 5. You will need to transfer the male and female cash 
separately from one year to the next. 
 
Exercises 
 
I. Expand the matrix from Exercise 5 into a three-year period. This will require 

about three times as many rows and three times as many columns as you used 
for Exercise 5. That is, you will have a set of columns (activities) for each year 
and a set of rows (constraints) for every year. Although the matrix is very 
large, it is not very dense because most coefficients are blanks. 

II. Solve the program for objective functions that maximize 1) the sum of year-
end cash balance over the three-year period, and 2) number of adult goats 
(size of the goatherd) in the third year. Other objectives could also be 
maximized if you like. 

III.  Try setting an integer constraint on the goat production and selling activities 
forcing them to be integers.  

IV.  Discuss and interpret the results. 
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Table 9a1. Suggested structure of the three year matrix 
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Table 9a2. Suggested matrix and the solution (three year end cash) for exercise 9a (part I)
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Table 9a2. Suggested matrix and the solution (three year end cash) for exercise 9a (part II)



Linear Programming in Small Farm Livelihood Systems. Hildebrand & Cabrera, 2003 
 

 35

Exercise 9b. Perennial crops 
 
Situation 
 
The farm family decides it would like to consider banana production. They 
estimate that the household could consume 100 kg of bananas and hope surplus 
bananas would be sold. The team estimates men’s labor for bananas is 5 units in 
the first semester and 20 units in the second. The woman would contribute 5 
units of labor in the first semester and 10 in the second. After the first year, the 
man and the woman each would contribute 5 units of labor each semester. The 
first year the bananas would require $50 of the man’s beginning cash. After that 
no cash is required for the bananas. Banana yield is estimated at about 6000 
kg/ha beginning the second year. The price of bananas for sale is $0.30 per 
kilogram. The man would control the cash from any bananas sold. 
 
Note: Remember that banana land has to be transferred from the first year to the 
second year and from the second to the third year and so on. But also remember 
that once the land is put in bananas it is not available for other uses in future 
years. Consequently, it is necessary to introduce a banana land constraint each 
year, and only non-banana land is available in future years for other activities. 
For the purpose of this exercise consider planting bananas only the first year. 
 
Exercises 
 
I. Modify the LP matrix from the Exercise 9a to introduce bananas in the 

multiple year model. Solve the program for an objective function that 
maximizes the sum of the three year end cash balances over the three year 
period. You might also try maximizing the area in bananas subject to all the 
other constraints. 

 
V. Discuss and interpret the results.
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Table 9b1. Suggested matrix and the solution (three year end cash) for exercise 9b (part I) 
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Table 9b2. Suggested matrix and the solution (three year end cash) for exercise 9b (part II)
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III. INTERACTIVE LINEAR PROGRAMMING WITH 
VISUAL BASIC 

 
PREFACE 

 
This set of learning exercises constitutes a manual designed for graduate students 
and others with linear programming literacy and familiarity with Microsoft 
Excel®.  It is intended to make the linear programming analysis more efficient in 
representing diverse households and respecting the diversity of household 
strategies. The objective is to achieve individual household analyses with 
accuracy and speed. 
 
Recent computer development has made it possible for farming systems teams to 
use linear programming on farm. Visual Basic could become an essential tool for 
updating and testing different situations working directly with the farmers. 
Visual Basic makes the simulation process user friendly. 
 
This set of exercises is divided into eight sections and 10 exercises. The first two 
sections deal with the simplest operations of “macros” and with inserting Visual 
Basic Objects in a spreadsheet. The third and the seventh sections present 
common linear programming tasks as input and output tables, respectively, 
linked to Visual Basic codes. 
 
The fourth, fifth, and sixth sections deal with all the needed tools to control the 
“solver” function directly from codes in Visual Basic. And, finally the last section 
presents and describes advanced “solver” codes. 
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A. Macros 
Macros are routines and sub-routines of tasks in Excel. Usually we do 
many of these routines and sub routines manually and frequently (e.g. 
copy and paste, cell and sheet selection, calculations, solve, etc.). 

 
Many times these routines are repetitive, time consuming, and with a 
chance of error. The use of macros for handling large amounts of data, 
saves time, reduces the chance of errors, and is very convenient. 

 
Macros can do any task that it is possible to do using the mouse and the 
keyboard in an Excel document. The principle of macros can better be 
understood if we think of it as analogous to a tape-recording process; we 
can record any routine and recall it at any time by simply using a shortcut 
(usually Ctrl + “letter”). 

        
Exercise 1 Copy and Paste Macro 
 
1. In an Excel spreadsheet. Go to Tools/Macro/Record New Macro 
 A Record Macro window will appear. 
 

 
  
2. In the Record Macro window. Leave the Macro name as Macro1, assign “z” 

as the Shortcut key, Store the macro in: This Workbook, and click OK.  
 A Stop Rec window will appear. 
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3. Now the recording process starts. Select cell C5, go to Edit/Copy. Select cell 

C10, go to Edit/Paste. Click in the blue square of the Stop Rec window. The 
macro is ready to use. 

 
4. Watch the macro work. Select cell C5 and write a number (e.g. 100), press 

Enter and press Ctrl + z.  
The number in the cell C5 will be duplicated and assigned to cell C10. Play 
with this. 
You will realize that this simple principle could be applied to many useful 
routines  

          
Exercise 2 Locate and run the macro in other ways 
 
1. You must be able to find where your macros are located. Let’s continue 

with the previous exercise. Go to Tools/Macro/Macros... 
 A Macro window will appear. 
 

 
 

2. Make sure This Workbook is selected and Macro1 is highlighted. Then 
press the Run button. This is another way to call the macro. 

 
3. Let’s do it directly from the Visual Basic Editor. Go to 

Tools/Macro/Visual Basic Editor (VBE) 
 Microsoft Visual Basic Editor will appear.     

You will see three frames in the Visual Basic Editor: in the upper left, the 
project directory; in the lower left the properties; and on the right a 
window for the CODES (it may contain visual basic codes or could just be 
empty). 
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4. You may need to locate your “Macro1" inside the Module1 in the Project 

Directory, double click in Modules folder and again double click in Module 
1. Once you have it, you will see the codes of this simple macro, in the 
codes window. 
Any routine has a SubName( ) that is the starting point and an End Sub 
that is the end. 
Between these commands you will see comments (green and starting with 
an apostrophe) and the real codes. 
In this example the name of the routine is Macro1, the comments refer to 
the date and author of the macro and the keyboard short cut. The codes 
are a set of select, copy, and paste.  
  

5. Return from VBE to the spreadsheet by clicking on the Excel icon in the 
bottom tool bar:  

 
  
and delete whatever is in cell C10. 
Return from the spreadsheet to VBE by clicking on the VBE icon in the 
bottom tool bar 
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Now, first make sure that the cursor is anywhere inside the routine 
“Macro1”, then look for the run icon in the middle top of the screen, click 
on it and going back to Excel check to see if cell C5 is copied to C10 in the 
spreadsheet. 
 

 
             
Now you are able to create and run Macros in Excel. Save the workbook 
with the name of FirstMacro but keep in mind that at any time you ask 
to open this file, Excel may warn you of the existence of macros (which are 
similar to viruses) and you will need to enable them. 
 

B. Visual Basic Objects and Buttons 
Microsoft Excel has a feature to insert objects and buttons in any 
spreadsheet. These are useful in the linear programming work. 
 

Exercise 3 Locate and familiarize yourself with VB objects 
 
1. Open the FirstMacro file, go to View/Toolbars and check Control 

Toolbox 
 A Control Toolbox will appear   
 

 
   

2. Let’s concentrate for now on the six middle buttons of the window: Check 
Box, Text Box, Command Button, Option Button, List Box, and Combo 
Box. (You can find these names by pointing and stopping the cursor on 
them).  

 
 3. Click on the Command Button. Go with the mouse to cell C4 in the 

spreadsheet (you will note that instead of an arrow for the mouse cursor, 
now you have a cross). Locate the cursor on the lower-left corner of C4 and 
drag it to the top-right corner of D3. A button will appear  
 

 
 

 4. Double click in the middle of the new CommandButton1. VBE will open 
and the cursor will be right in the middle of a program routine; write 
Macro1 and close VBE. 



Linear Programming in Small Farm Livelihood Systems. Hildebrand & Cabrera, 2003 
 

 43

In the spreadsheet you will see that the Design Mode (Ruler, Triangle  
Pencil icon) is selected; deselect it by clicking on it. 
  

 
  
 

5. Go to cell C5. Write a number (e.g. 1000), press enter. Now click on the 
CommandButton1. 

 You will see that the number you put in C5 is copied into cell C10. 
You called Macro1 directly from the CommandButton1.   
 

6. Play and insert other VB objects in the spreadsheet. Save your file as 
FirstButton 

 
Exercise 4 Set up a Combo Box  
 
1. Open the FirstButton file and repeat step 1 of Exercise 3. In the Control 

Toolbox click on the Combo Box option. Insert a Combo Box in cells H2-
I3.  
    

 
 

2. Write successive numbers 1 to 10 in cells J1 to J10. Make sure that the 
design mode is selected in the Control Toolbox and then double click on 
the Combo Box. The VBE window will appear. 

 

 
 
3. In the VBE window, first thing, select GotFocus option from the drop 

menu in the top-right combo box (as seen  in above figure), and then, write 
this code:  

 
 ComboBox1.List = Sheet1.Range("J1:J10").Value   
 
between Sub and End Sub of the CommandButton2. 
  
 You will generate this routine:  
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 Private Sub ComboBox1_GotFocus() 
 ComboBox1.List = Sheet1.Range("J1:J10").Value 
 End Sub 
 

4. Return to the spreadsheet, make sure the design mode is deselected. Click 
on the drop menu option of the ComboBox you just created. 
You will see that the numbers of cells J1 to J10 are now selection options 
in the ComboBox. Imagine that each number represents a specific 
household and links to its input data in your matrix and you could select 
any of them easily. Save your file as FirstList. 
     
 

C. Filters-Inputting Data 
A critical function in individual household LP analysis is being able to 
insert each household’s information in the matrix efficiently and rapidly 
without a chance of error. The Filter function of Excel, macros or routines, 
and Visual Basic objects will help in this task. 
 

Exercise 5 Filter and Special Paste 
 
1. Open the file filter1.xls. Available at:  

http://nersp.nerdc.ufl.edu/~vecy/vbe/ 
Save the file in your local hard drive. 
 

2. Take a look at the file. You should be familiar with this, it is the solution to 
Exercise 5 of the Linear Programming manual. Note that there are two 
sheets: MATRIX and INPUT. Some RHS numbers in the MATRIX sheet 
(labor and maize consumption) are linked to the input sheet; they are 
highlighted with yellow. Whenever we change family composition in the 
INPUT table, the labor available and the consumption requirement change 
in the MATRIX. Let’s see how Visual Basic can do that for us. 

 
3. To understand the FILTER function, go to the INPUT sheet, select cell H9 

and write in Household then select cell H10 and write the number 5. Click 
Enter and look in the Excel main menu for: 
Data/Filter/Advanced Filter... 
The Advanced Filter window will appear 
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In the Advanced Filter window, select Copy to another location. Make sure 
that in the List range, the household table: $A$9:$F$17 is selected and in 
the Criteria range, our criterion just written: $H$9:$H$10 is selected. 
Finally, for the Copy to, make sure $A$19:$F$19 is selected, as seen in the 
above Figure. Click OK. 
 
You will realize that this Filter function is very useful. It uses the Criteria 
range to find an exact match inside the List range (register number inside 
column heading). After finding it, it takes the whole matched row (family 
composition) and Copies it to the selected cells. Change the number of 
household in cell H10 and go to the Advanced Filter again. Play with this. 
 

4. Now you are ready to make a macro called filt with a shortcut Ctrl+f. Save 
the macro in this workbook and make sure it works properly. 

 
5. The next step will be to put the household composition (selected in cells 

B20 to F20) into the input table (Cells B2 to B6). Manually, the easiest way 
is to just copy B20 to F20, and Transpose them in a Paste Special. Do it.  
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6. Create a new macro called hhcopy with shortcut Ctrl+h that makes this 

Paste Special for you. Make sure it works correctly. 
This is neat. Change the H10 number, do Ctrl+f, the household selected 
changes, now do Ctrl+h, the labor available and consumption change not 
only in the above tables but also inside the matrix. 
Save this file as filter2.  
 

Exercise 6 Select Households from the Matrix Sheet 
 
1. Start by opening the filter2.xls file.  
 
2. Select the MATRIX sheet. Insert a ComboBox between F27 and G27. Write 

Household in F26. 
3. Double click on the ComboBox and similarly to exercise 4, step 3, write: 

Private Sub ComboBox1_GotFocus() 
ComboBox1.List = Sheets("INPUT").Range("a10:a17").Value 
End Sub  
This code is assigning the values of the household numbers (1 to8) to the 
Combobox. 
 

4. Insert a CommandButton in the MATRIX sheet, between cells K26 and 
L27. Double click on this second button and write: 

 Private Sub CommandButton2_Click() 
     Sheets("INPUT").Range("H10") = ComboBox1.Value 
     Sheets("INPUT").Select 
     filt 
     hhcopy 
     Sheets("MATRIX").Select 
 End Sub 

Note: you do not need to go to GotFocus for this routine. 
These codes are a little more complex. In the first line we are assigning the 
current ComboBox value to cell H10 in the INPUT sheet. In the second 
line we are indicating that we will work for a while in the INPUT sheet. 
The third and fourth lines are calling the macros filt and hhcopy 
respectively. The last line is only to return to our worksheet, MATRIX. 

 
5. Deselect the Design Mode in the Control Toolbox, pick up some number in 

the ComboBox and click on the second CommandButton. Note that the 
numbers in the RHS of the matrix change automatically with each change 
in the household number, so you may solve the matrix for different 
households. 
 
Play with it by changing the numbers. Save your file as filter3.    
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D. Visual Basic Solver Function 
It is possible to call the solver function directly from the Visual Basic 
through codes or macros. If we call the function from macros we need to 
previously setup the solver parameters manually (Target Cell 
Max/Min/etc, Changing cells, Constraints, etc.). 
 
There are two important things to take into account before starting with 
the next exercises: 
 

1. The solver can not be called if some cell in the sheet is being edited or if no 
specific cell is selected in a sheet. Taking this into account can avoid many 
frustrations. 

2. The solver can only work from codes or macros in Visual Basic if a 
reference to them exists. Exercise 7 deals with this topic. 

 
E. Visual Basic Reference to Solver 
 
Exercise 7 Including the Solver Reference 
 
1. Open your previous file filter3.xls  
 
2. Open the Visual Basic Editor (VBE). (See exercise 2 & 3). In the top left 

window, highlight the VBAProject (filter3.xls), go to Tools/References. 
The VBAProject window will appear. In this window check solver and click 
OK. The Project window must have Refernces/Reference to SOLVER.XLA: 
 

 
 
Note that there is a new folder (References) inside which is the reference 
to the solver. You can put the reference in another path and it will still 
work, but it is always a good idea to insert it in the file you are working on 
to make sure it will work in other computers. 
 

3. Close the VBE and save your file as filter4. 
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F. Direct Solver Call 
 
Exercise 8 Solver Button 
 
1. Open your file filter4.xls  
 
2. Record a new macro called sol with the “Ctrl+s” shortcut to call the solver 

and solve the matrix.  
 
3. Record another new macro called del with the “Ctrl+d” shortcut that 

deletes the variable cells of the matrix. 
 
4. Now you can control all the actions in just one button. Select design mode 

(see exercise 3), double click in the existing command button, insert at the 
end of existing commands the new commands del and sol and you will get 
this: 
 
 Private Sub CommandButton1_Click() 
  Sheets("INPUT").Range("H10") = ComboBox1.Value 
      Sheets("INPUT").Select 
      filt 
     hhcopy 
      Sheets("MATRIX").Select 
  del 
  sol 
 End Sub 
 

5. Try it. You must choose one household in the ComboBox, then click in the 
CommadButton2 and everything is done. 

 
6. Play with this and make sure all the solutions are correct. Which 

households obtain non-feasible solutions? 
 
7. Save your file as solv1. 
 
G. Listing Results 
 
Exercise 9 Output Tables 
 
1. Open your file solv1.xls 
 
2. Go to Insert/Worksheet (right click on INPUT and click on insert, then 

worksheet). Right click on the new sheet1 and click on rename and rename 
it OUTPUT. In cell B5 in OUTPUT, write household and in the next 
columns copy the names of the variables of the matrix. After that, in the 
same row copy all the names of the resources and constraints (hint: use 
Paste Special/Transpose). Then you will get column headings B5 to AC5. 
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3. In cells C4 to AC4 (yes, above not below) refer or link to the values of the 

matrix.   
 
4. Refer or link cell B4 to the INPUT sheet (H10).  
 
5. Create a new macro that inserts copied cells from the row 4 to row 6 using 

row 3 as a bridge. 
Call this macro output and use “Ctrl+o” as a shortcut. 
Right click on number “4" (of row 4) and select “Copy” 
Right click on number “3" (of row 3) and select “Paste Special...” and select  
“Values.” Then click OK. 
Right click on number “3" (of row 3) and select “Copy” 
Right click on number “6" (of row 6) and select “Insert Copied Cells” 
 

6. Go to the MATRIX sheet. Select design mode and double click on the 
Command button. In the VBE, write at the end of the commands (after 
Sol) 

Sheets("OUTPUT").Select 
output 
Sheets("MATRIX").Select 

Then close VBE. 
7. Deselect design mode in Excel and try it to see if it works properly. Solve 

households 1 to 8 in order and see the differences at the end in the 
OUTPUT sheet. 
Save your file as solv2. 
 

H. Solver with Commands 
 
The solver in Microsoft Office can be called through commands in the 
VBE. For example, we could just write SolverSolve and refer it to some 
command button in the spreadsheet and it would work exactly the same as 
recording a macro. But the main advantage of calling the solver by 
commands is that we can control all the parameters directly from buttons 
in the spreadsheet. With that in mind, here is an exercise and a list of all 
the commands that control the solver. These commands only work with 
Microsoft Excel 97 (or above) and the regular solver engine. For other 
versions, there are slight differences and you may need to find the exact 
commands in the help files or in the manuals. Sometimes tutorial software 
handles these topics as well.   
 

Exercise 10 Advanced Solver 
 
1. Open your file solv2.xls  
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2. Go to VBE. Find your codes that call the solver (hint: double click in 
module2). You will see a series of codes. Some of them set up the 
parameters and the last code SolverSolve takes the action of the solver. 
 
Sub sol() 
' 
' sol Macro 
' Macro recorded 8/12/2003 by VECabrera 
' Keyboard Shortcut: Ctrl+s 
 
SolverOk SetCell:="$P$24", MaxMinVal:=1, ValueOf:="0", 
ByChange:="$C$7:$M$7" 
SolverSolve 
End Sub Sub sol() 
 

3. The first two lines (bold) were set in the solver for exercise 5; Excel does 
not include the constraints in this macro, however we could include them 
if desired by using the command SolverAdd (see following list). The 
constraints are not inside these parameters. Rather it is using the current 
constraints in the solver window. We can delete or change them to 
comment mode (not active) and control the parameters directly from the 
spreadsheet. Put an apostrophe before the first codes line: 
 
‘SolverOk SetCell:="$P$24", MaxMinVal:=1, ValueOf:=0, 
ByChange:="$C$7:$M$7" 
 
Letters will turn green indicating they are not active. Now, we are using 
the most important code only to call the solver function. Try it in the 
spreadsheet. Once it is working, you can go to the Tools/Solver and for 
example delete the “>=” constraints. Now solve directly from the 
CommandButton. How do the solutions in the different households 
change? Are there more or fewer non-feasible solutions?. 
 

4. Save your file as solv3. 
 
List of Solver VBE Commands 
 

SolverAdd: 
 Adds constraints to a Solver model. Takes three arguments: 
 • cellRef—Reference to a cell or a range of cells that forms the left side of a 
constraint. 
 • relation—1 (<=), 2 (=), 3 (>=), or 4. (Cells referenced by cellRef must 
contain integers.) 
 • formulaText—Right side of the constraint. 
  
SolverChange: 
 Changes an existing constraint. Takes three arguments: 
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 • cellRef—Reference to a cell or a range of cells that forms the left side of a 
constraint. 
 • relation—1 (<=), 2 (=), 3 (>=), or 4. (Cells referenced by cellRef must 
contain integers.) 
 • formulaText—Right side of the constraint. 
 
 SolverDelete: 
 Deletes an existing constraint. Takes three arguments: 
 • relation—1 (<=), 2 (=), 3 (>=), or 4. (Cells referenced by cellRef must 
contain integers.) 
 • formulaText—Right side of the constraint. 
  
SolverFinish: 
 After solving a problem, tells Excel to keep the results and to create a 
report. Takes two arguments: 
 • keepFinal—1   keep final results; or 2   discard results and return to 
original values. 
 • reportArray—1   create an Answer report; 2   create a Sensitivity report; 
or 3   create a Limit report. 
 
SolverFinishDialog: 
 Equivalent to SolverFinish; however, also displays the Solver Results 
dialog box after solving a problem. Takes two arguments: 
 • keepFinal—1   keep final results; or 2   discard results and return to 
original values. 
 • reportArray—1   create an Answer report; 2   create a Sensitivity report; 
or 3   create a Limit report. 
 
 SolverGet: 
 Returns information about the Solver model. Takes two arguments: 
 • typeNum—Takes values from 1 through 18 to return information about 
the Solver model. For details, use the 
 Object Browser to view the SolverGet help topic in the XLM Function 
Reference section in Excel 5's online Help. 
 • sheetName—Name of the sheet containing the Solver model. 
 
 SolverLoad: 
 Loads parameters for an existing Solver model that have been saved to the 
worksheet. Takes one argument: 
 • loadArea—Range on the active sheet that contains the Solver model. 
 SolverOk: 
 Defines a Solver model. Takes four arguments: 
 • setCell—Target cell for the Solver model. 
 • maxMinVal—1   maximize target; 2   minimize target, 3   match target to 
a specific value. 
 • valueOf—If the maxMinVal argument is set to 3, you must specify the 
value to which the target cell is to be 
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 matched. 
 • byChange—Cell or range of cells that will be changed in setting the target 
cell. 
 
 SolverOkDialog: 
 Same as SolverOk but also displays the Solver dialog box. Takes four 
arguments: 
 • setCell—Target cell for the Solver model. 
 • maxMinVal—1   maximize target; 2   minimize target; 3   match target to 
a specific value. 
 • valueOf—If the maxMinVal argument is set to 3, you must specify the 
value to which the target cell is to be 
 matched. 
 • byChange—Cell or range of cells that will be changed in setting the target 
cell. 
 
SolverOptions: 
 Allows you to specify advanced options for your Solver model. Takes 10 
arguments: 
 • maxTime—Maximum time Excel will spend solving the problem. 
 • iterations—Maximum iterations Excel will use in solving the problem. 
 • precision—Number between O and 1 that specifies the degree of 
precision to be used in solving the problem. 
 • assumeLinear—If True, Solver assumes that the underlying model is 
linear. 
 • stepThru—If True, Solver pauses at each trial solution. 
 • estimates—1 for tangent estimates; 2 for quadratic estimates. 
 • derivatives—1 for forward, 2 ffir central. 
 • search—1 for Quasi Newton search; 2 for Conjugate Gradient search. 
 • intTolerance—Number between O and 1 that specifies tolerance. 
 • scaling—If Scaling is True and two or more constraints differ by several 
orders of magnitude, Solver scales the constraints to similar orders of 
magnitude during computation. 
  
SolverReset: 
 Resets Solver options (cell selections and constraints in the Solver 
Parameters dialog box and all settings in the Solver Options dialog box) to 
their default values. 
 
 SolverSave: 
 Saves a Solver model definition to a range of cells on the worksheet. Takes 
one argument: 
 • saveArea—The range of cells to which the Solver model is to be saved. 
 
 SolverSolve: 
 Starts a Solver solution run. Takes two arguments: 
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 • userFinish—If True, Solver returns results without displaying anything. 
If False, Solver returns results and displays the Solver Results dialog box. 
 • showRef—This argument is used only if True is passed for the step thru 
argument of the  
SolverOptions function. 
 If so, you can pass the name of a subroutine (as a string) as the showRef 
argument—this routine will be called whenever Solver returns an 
intermediate solution. 
  
Other proposed exercises 
 
You can try these exercises using your file solv3.xls  
 

1.  Make the last window of “solver results” disappears at the end of the 
solver. After clicking on the solver button only results must appear. 

 
2 Control the cash constraints with buttons. With a button take out these 

constraints, with another button include them before solving. 
 
3. If you have some literacy in Visual Basic, you could try to make a “loop” in 

which you could solve the eight households with only one click. 
 
4. If you have some literacy in Visual Basic, you could try to insert “if–then” 

statements that control constraints. 
 
5. Your imagination is the limit. 




